2019版高考数学一轮复习第7章立体几何7.5直线平面垂直的判定与性质学案(理科).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2019版高考数学一轮复习第7章立体几何7.5直线平面垂直的判定与性质学案(理科).doc》由用户(flying)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 高考 数学 一轮 复习 立体几何 7.5 直线 平面 垂直 判定 性质 理科 下载 _一轮复习_高考专区_数学_高中
- 资源描述:
-
1、=【 ;精品教育资源文库 】 = 7 5 直线、平面垂直的判定与性质 知识梳理 1直线与平面垂直 判定定理与性质定理 2平面与平面垂直 判定定理与性质定理 =【 ;精品教育资源文库 】 = 3直线和平面所成的角 范围: ? ?0, 2 . 4二面角 范围 0, 5必记结论 (1)若两条平行线中一条垂直于一个平面,则另一条也垂直于这个平面 (2)若一条直线垂直于一个平面,则这条直线垂直于这个平面内任何一条直线 (3)过空间任一点有且只有一条直线与已知平面垂直 (4)过空间任一点有且只有一个平面与已知直线垂直 (5)两平面垂直的性质定理是把面面垂直转化为线面垂直 (6)两个相交平面同时垂直于第三个
2、平面,它们的交线也垂直于第三个平面 诊断自测 1概念思辨 (1)直线 l 与平面 内的无数条直线都垂直,则 l .( ) (2)垂直于同一个平面的两平面平行 ( ) (3)若两平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面 ( ) (4)若平面 内的一条直线垂直于平面 内的无数条直线,则 .( ) 答案 (1) (2) (3) (4) 2 教材衍化 (1)(必修 A2P73A 组 T1)若 m, n 表示两条不同的直线, 表示平面,则下列命题中,正确命题的个数为 ( ) =【 ;精品教育资源文库 】 = ?m n ?m n; ?m n ?m n; ?m m n ?n . A 1 B
3、2 C 3 D 0 答案 B 解析 不正确,直线 n 与 不一定垂直,可能是平行或相 交或在平面内 均正确故选 B. (2)(必修 A2P67T2)在三棱锥 P ABC 中,点 P 在平面 ABC 中的射影为点 O, 若 PA PB PC,则点 O 是 ABC 的 _心; 若 PA PB, PB PC, PC PA,则点 O 是 ABC 的 _心 答案 外 垂 解析 如图 1,连接 OA, OB, OC, OP, 在 Rt POA、 Rt POB 和 Rt POC 中, PA PC PB,所以 OA OB OC,即 O 为 ABC 的外心 如图 2, PC PA, PB PC, PA PB P
4、, PC 平面 PAB, AB?平面 PAB, PC AB,又 AB PO, PO PC P, AB 平面 PGC,又 CG?平面 PGC, AB CG, 即 CG 为 ABC 边 AB 的高, 同理可证 BD, AH 分别为 ABC 边 AC, BC 上的高,即 O 为 ABC 的垂心 3小题热身 (1)(2017 湖南六校联考 )已知 m 和 n 是两条不同的直线, 和 是两个不重合的平面,下面给出的条件中一定能推出 m 的是 ( ) A 且 m? B 且 m C m n 且 n D m n 且 n 答案 C 解析 由线线平行性质的传递性和线面垂直 的判定定理,可知 C 正确故选 C. (
5、2)(2018 辽宁五校联考 )假设平面 平面 EF, AB , CD ,垂足分别为 B,D,如果增加一个条件,就能推出 BD EF,现有下面四个条件: =【 ;精品教育资源文库 】 = AC ; AC ; AC 与 BD 在 内的射影在同一条直线上; AC EF. 其中能成为增加条件的是 _ (把你认为正确的条件序号都填上 ) 答案 解析 如果 AB 与 CD 在一个平面内,可以推出 EF 垂直于该平面,又 BD 在该平面内,所以 BD EF.故要得到 BD EF,只需 AB, CD 在一个平面内即可,只有 能保 证这一条件 题型 1 直线与平面垂直的判定与性质 角度 1 直线与平面垂直的判
6、定定理 典例 (2016 全国卷 )如图,已知正三棱锥 P ABC 的侧面是直角三角形, PA 6.顶点 P 在平面 ABC 内的正投影为点 D, D 在平面 PAB 内的正投影为点 E,连接 PE 并延长交 AB于点 G. (1)证明: G 是 AB 的中点; (2)在图中作出点 E 在平面 PAC 内的正投影 F(说明作法及理由 ),并求四面体 PDEF 的体积 利用线面垂直判定定理进行证明 解 (1)证明:因为 P 在平面 ABC 内的正投影为 D,所以 AB PD. 因为 D 在平面 PAB 内的正投影为 E,所以 AB DE.又 PD DE D,所以 AB 平面 PED,故 AB P
7、G. 又由已知可得, PA PB,从而 G 是 AB 的中点 (2)在平面 PAB 内,过点 E 作 PB 的平行线交 PA 于点 F, F 即为 E 在平面 PAC 内的正投影 =【 ;精品教育资源文库 】 = 理由如下:由已知可得 PB PA, PB PC,又 EF PB,所以 EF PA, EF PC,又 PA PC P,因此 EF 平面 PAC,即点 F 为 E 在平面 PAC 内的正投影 连接 CG,因为 P 在平面 ABC 内的正投影为 D,所以 D 是正三 角形 ABC 的中心,由 (1)知,G 是 AB 的中点,所以 D 在 CG 上,故 CD 23CG. 由题设可得 PC 平
展开阅读全文