书签 分享 收藏 举报 版权申诉 / 25
上传文档赚钱

类型广东省东莞市2022届高三上学期期末考试数学试题 (含解析).doc

  • 上传人(卖家):小豆芽
  • 文档编号:2827726
  • 上传时间:2022-05-29
  • 格式:DOC
  • 页数:25
  • 大小:7.81MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《广东省东莞市2022届高三上学期期末考试数学试题 (含解析).doc》由用户(小豆芽)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    广东省东莞市2022届高三上学期期末考试数学试题 含解析 广东省 东莞市 2022 届高三上 学期 期末考试 数学试题 解析 下载 _一轮复习_高考专区_数学_高中
    资源描述:

    1、20212022学年度第一学期教学质量检查高三数学一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把正确选项在答题卡中的相应位置涂黑1. 设集合,则( )A. B. C. D. 【答案】A【解析】【分析】先化简集合B,再利用集合的交集运算求解.【详解】因为集合,故选:A2. 的展开式中项的系数是( )A. 9B. 10C. 11D. 12【答案】B【解析】【分析】利用二项式定理求得中项的系数,进而可求得的展开式中含项的系数.【详解】当且,的展开式通项为,所以,的展开式中含的系数为,的展开式中,含项的系数是.故选:B.3. 已知函数,则

    2、下列结论正确的是( )A. 是偶函数B. 是奇函数C. 是奇函数D. 是奇函数【答案】C【解析】【分析】先以偶函数定义去判断选项A的正误,再以奇函数的定义去判断选项B、C、D的正误.【详解】选项A: ,是奇函数,判断错误;选项B: ,是偶函数,判断错误;选项C: ,是奇函数,判断正确;选项D: ,是偶函数,判断错误.故选:C4. 若,则( )A. B. 1C. D. 【答案】B【解析】【分析】根据,和,即可得到,进而求出结果.【详解】因为,所以,所以,所以,即,所以,故选:B.5. 甲乙两人在数独APP上进行“对战赛”,每局两人同时解一道题,先解出题的人赢得一局,假设无平局,且每局甲乙两人赢的

    3、概率相同,先赢3局者获胜,则甲获胜且比赛恰进行了4局的概率是( )A. B. C. D. 【答案】D【解析】【分析】以独立事件同时发生的概率公式去解决即可.【详解】甲乙两人各自解题是相互独立事件,又知每局中甲乙两人赢的概率相同,即甲赢的概率为,甲输的概率为.则甲获胜且比赛恰进行了4局的比赛情况是:甲在前三局中赢了两局,第四局赢了.其概率是故选:D6. “中国天眼”(如图1)是世界最大单口径、最灵敏的射电望远镜,其形状可近似地看成一个球冠(球冠是球面被平面所截的一部分,如图2所示,截得的圆叫做球冠的底,垂直于截面的直径被截得的线段叫做球冠的高若球面的半径是,球冠的高度是,则球冠的面积)已知天眼的

    4、球冠的底的半径约为250米,天眼的反射面总面积(球冠面积)约为25万平方米,则天眼的球冠高度约为( )(参考数值) A. 52米B. 104米C. 130米D. 156米【答案】C【解析】【分析】由,结合求解.【详解】由题意得:,则,则,所以,所以,故选:C7. 已知直线过抛物线:的焦点,且与该抛物线交于两点.若线段的长为16,的中点到轴距离为6,则(为坐标原点)的面积是( )A. B. C. D. 【答案】B【解析】【分析】设,的坐标,由抛物线的性质到焦点的距离等于到准线的距离,可得的表达式,再由的中点到轴的距离是6可得,的横坐标之和,进而可得的值,求出抛物线的方程,设直线的方程,与抛物线联

    5、立,结合韦达定理可求出三角形的面积【详解】设,由抛物线的定义可得,又因为的中点到轴的距离是6,所以,所以,所以抛物线的方程为:,设直线的方程,联立直线与抛物线的方程:,整理可得,所以,解得,所以的方程为:,.故选:B8. 已知为坐标原点,点为函数图象上一动点,当点的横坐标分别为时,对应的点分别为,则下列选项正确的是( )A. B. C D. 【答案】D【解析】【分析】设,则,令,利用导数可得函数为增函数,即得.【详解】设,则,令,则,设,则所以在上为增函数,故,即,在上为增函数,即.故选:D.二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全

    6、部选对的得5分,有选错的得0分,部分选对的得2分.请把正确选项在答题卡中的相应位置涂黑9. 已知复数,是的共轭复数,则下列结论正确的是( )A. 若,则B. 若,则C. 若,则D. 若,则【答案】ABC【解析】【分析】若 ,则, ,利用复数代数运算,可以判断AB;利用复数的三角运算,可以判断C;利用数形结合,可以判断D.【详解】对于A:若 ,则,故,所以A正确;对于B:若,则,所以B正确;对于C:设 ,则 ,故 ,所以C正确;对于D:如下图所示,若 ,则,故 ,所以D错误. 故选:ABC10. 已知函数,若且对任意都有,则下列结论正确的是( )A B. C. 的图象向左平移个单位后,图象关于原

    7、点对称D. 的图象向右平移个单位后,图象关于轴对称【答案】BD【解析】【分析】先根据条件求得b值,根据可知为函数最大值,据此列出关于a的方程,求出a值,得到函数f(x)的解析式,结合辅助角公式和诱导公式,可判断A、B的正误,再根据三角函数图象的变换规律,可判断B、D的正误.【详解】 , ,又对任意都有,则为 的最大值, ,整理得: ,则 ,所以 ,因此A选项错误,B正确;的图象向左平移个单位后得到的图象对应的函数解析式为: ,该函数图象不关于原点对称,故C错误;的图象向右平移个单位后,得到函数 的图象,该图象关于y轴对称,故D正确,故选:BD11. 气象意义上从春季进入夏季的标志为“当且仅当连

    8、续天每天日平均温度不低于”现有甲、乙、丙三地连续天日平均温度的记录数据(数据均为正整数,单位)且满足以下条件:甲地:个数据的中位数是,众数是;乙地:个数据的中位数是,平均数是;丙地:个数据有个是,平均数是,方差是;根据以上数据,下列统计结论正确的是( )A. 甲地进入了夏季B. 乙地进入了夏季C. 不能确定丙地进入了夏季D. 恰有2地确定进入了夏季【答案】AC【解析】【分析】根据所给数据,对甲地,乙地,丙地逐个分析判断,即可得解.【详解】甲地:5个数据由小到大排,则22,22,24,其中,满足进入夏季的标志;乙地:将5个数据由小到大排,则,27,其中,则,而,故,其中必有一个小于22,故不满足

    9、一定进入夏季的标志;丙地:设5个数据为,30,且,由方差公式可知:,则,不妨设,则,均大于22,但不确定是否大于22,故不能确定丙地进入夏天.故选:AC12. 已知函数,则下列结论正确的是( )A. B. C. 关于的方程的所有根之和为D. 关于的方程的所有根之积小于【答案】ACD【解析】【分析】利用函数的表达式依次判断.【详解】,A正确;当时,关于,当时, (,表示不超过的整数)所以B错,的根为,的根为,的根为,所有根的和为:,C正确;由,累加可得所以所有根之积小于,D正确.故选:ACD.三、填空题:本大题共4小题,每小题5分,共20分.请把答案填在答题卡的相应位置上13. 已知为双曲线:的

    10、一个焦点,则点到双曲线的一条渐近线的距离为_.【答案】【解析】【分析】分别求出双曲线的焦点和渐近线,再代入点到直线的距离公式即可.【详解】双曲线:的焦点为双曲线:的渐近线为由双曲线的对称性,不妨取焦点,渐近线为则则点到渐近线的距离为故答案为:414. 已知一个圆锥的底面半径为,其侧面积为,则该圆锥的体积为_.【答案】【解析】【分析】根据圆锥的侧面积公式求出圆锥的母线长,利用勾股定理求出圆锥的高,再根据圆锥的体积公式可求出结果.【详解】设圆锥的母线长为,因为圆锥的底面半径,所以圆锥的侧面积,依题意可得,解得,所以圆锥的高,所以该圆锥的体积.故答案为:.15. 桌面上有一张边长为2的正三角形的卡纸

    11、,设三个顶点分别为,将卡纸绕顶点顺时针旋转,得到、的旋转点分别为、,则_.【答案】#【解析】【分析】以点为坐标原点,为轴建立平面直角坐标系,得出点的坐标,旋转后得出点的坐标,从而得出向量的坐标,从而得出数量积.【详解】以点为坐标原点,为轴建立平面直角坐标系. 如图,则 则 将绕顶点顺时针旋转,得到,如图. 则,即可以看成是角的终边. 点在轴上则, 所以 所以所以 故答案为: 16. 龙曲线是由一条单位线段开始,按下面的规则画成的图形:将前一代的每一条折线段都作为这一代的等腰直角三角形的斜边,依次画出所有直角三角形的两段,使得所画的相邻两线段永远垂直(即所画的直角三角形在前一代曲线的左右两边交替

    12、出现).例如第一代龙曲线(图3)是以为斜边画出等腰直角三角形的直角边,所得的折线图,图4、图5依次为第二代、第三代龙曲线(虚线即为前一代龙曲线).,为第一代龙曲线的顶点,设第代龙曲线的顶点数为,由图可知,则_;数列的前项和_. 【答案】 . . 【解析】【分析】根据题意并观察图形即可得到的值;对已知的数据进行分析,可得,进而可得,再采用裂项相消,即可求出结结果.【详解】由题意可,观察可知,;由易知,所以,所以.故答案为:,.四、解答题:本大题共6小题,第17题10分,18、19、20、21、22题各12分,共70分.解答应写出文字说明、证明过程或演算步骤.必须把解答过程写在答题卡相应题号指定的

    13、区域内,超出指定区域的答案无效17. 的内角、的对边分别为、,已知.(1)求;(2)若,的面积为,求的周长.【答案】(1); (2).【解析】【分析】(1)利用正弦定理结合两角和的正弦公式可求得的值;(2)利用三角形的面积公式可求得,利用余弦定理可得出的值,可求得的值,即可得解.【小问1详解】解:因为,由正弦定理得,即,由,得,因为,所以.【小问2详解】解:由,得,解得,由,即,即.由,得,故,所以的周长为.18. 设等差数列的前项和为,且,.(1)求数列的通项公式;(2)在任意相邻两项和之间插入个1,使它们和原数列的项构成一个新的数列,求数列的前200项的和.【答案】(1) (2)【解析】【

    14、分析】(1)设等差数列的公差为,由求解;(2)方法一:由题意得到,的各项为,再确定数列的项求解;方法二:由在数列中,前面(包括)共有项,令,确定数列的项求解.【小问1详解】解:设等差数列的公差为,由题得,即,整理得,解得.所以.【小问2详解】方法一:由题意可知,的各项为即,因为,且,所以,会出现在数列的前200项中,所以前面(包括)共有126+7=133项,所以后面(不包括)还有67个1,所以,方法二:在数列中,前面(包括)共有项,令,则,所以,会出现在数列的前200项中,所以前面(包括)共有126+7=133项,所以后面(不包括)还有67个1,所以, 19. 如图,在正四棱锥中,点,分别是,

    15、中点,点是上的一点. (1)证明:;(2)若四棱锥的所有棱长为,求直线与平面所成角的正弦值的最大值.【答案】(1)证明见解析 (2)【解析】【分析】(1)作出辅助线,证明线面垂直,进而证明线线垂直;(2)建立空间直角坐标系,利用空间向量进行求解.【小问1详解】如图,连接SO和OE, 因为是正四棱锥,所以平面ABCD,又因为平面ABCD,所以因为ABCD是正方形,所以,又因为点O,E分别是BD,BC中点,所以,所以又因为,OE、平面SOE,所以平面SOE,因为平面SOE,所以.【小问2详解】易知OB,OC,OS两两相互垂直,如图,以点O为原点,OB,OC,OS为x,y,z轴建立空间直角坐标系,

    16、因为四棱锥的所有棱长为,所以,所以,设,得,则,设平面SDE的法向量为,则,解得,取,得,设直线OF与平面SDE所成角为,则,当时,取得最小值,此时取得最大值.20. 已知某次比赛的乒乓球团体赛采用五场三胜制,第一场为双打,后面的四场为单打.团体赛在比赛之前抽签确定主客队.主队三名选手的一单、二单、三单分别为选手、,客队三名选手的一单、二单、三单分别为选手、.比赛规则如下:第一场为双打(对阵)、第二场为单打(对阵)、第三场为单打(对阵)、第四场为单打(对阵)、第五场为单打(对阵).已知双打比赛中获胜的概率是,单打比赛中、分别对阵、时,、获胜的概率如下表:选手选手 (1)求主、客队分出胜负时恰进

    17、行了3场比赛的概率;(2)客队输掉双打比赛后,能否通过临时调整选手为三单、选手为二单使得客队团体赛获胜的概率增大?请说明理由.【答案】(1) (2)能通过临时调整选手为三单、选手为二单使得客队团体赛获胜的概率增大,理由见解析【解析】【分析】(1)由“主、客队分出胜负时恰进行了3场比赛”的事件包含“主队3场全胜”和“客队3场全胜”两类事件求解;(2)剩余四场比赛未调整Y、Z出场顺序的胜负情况分别为:胜胜胜、胜负胜胜、胜胜负胜、负胜胜胜,求得其概率;剩余四场比赛调整Y、Z出场顺序的胜负情况分别为:胜胜胜、胜负胜胜、胜胜负胜、负胜胜胜,求得其概率,比较即可.【小问1详解】解:设“主、客队分出胜负时恰

    18、进行了3场比赛”事件为事件A,则事件A包含“主队3场全胜”和“客队3场全胜”两类事件,“主队3场全胜”的概率为,“客队3场全胜”的概率为,所以,所以主、客队分出胜负时恰进行了3场比赛的概率为.【小问2详解】能,理由如下:设“剩余四场比赛未调整Y、Z出场顺序,客队获胜”为事件M,第二场单打(X对阵A)、第三场单打(Z对阵C)、第四场单打(Y对阵A)、第五场单打(X对阵B)的胜负情况分别为:胜胜胜、胜负胜胜、胜胜负胜、负胜胜胜;则,设“剩余四场比赛调整Y、Z出场顺序,客队获胜”为事件N,第二场单打(X对阵A)、第三场单打(Y对阵C)、第四场单打(Z对阵A)、第五场单打(X对阵B)的胜负情况分别为:

    19、胜胜胜、胜负胜胜、胜胜负胜、负胜胜胜;则,因为,所以客队调整选手Y为三单、选手Z为二单获胜的概率更大.21. 已知点为椭圆的左顶点,点为右焦点,直线与轴的交点为,且,点为椭圆上异于点的任意一点,直线交于点.(1)求椭圆的标准方程;(2)证明:.【答案】(1) (2)证明见解析【解析】【分析】(1)由,右焦点,以及关系,联立可求解出,从而得椭圆的方程;(2)设点的坐标为,表示出直线的方程,从而得点的坐标,进而表示出和,计算得,再由,代入化简计算,即可得,所以可证明.【小问1详解】由题知,得,又因为右焦点为,则,解得,所以,所以椭圆的方程为.【小问2详解】设点的坐标为,则,所以直线的方程是,当时,

    20、所以点的坐标为,所以,所以.因为点在椭圆上,所以,即,所以,又因为和是锐角,所以.【点睛】一般椭圆中的动点问题,需要设出动点坐标,然后根据题意列式计算,再由动点满足椭圆的方程代入化简,即可求出定值.22 已知且,函数.(1)若,求函数在处的切线方程;(2)若函数有两个零点,求实数的取值范围.【答案】(1) (2)【解析】【分析】(1)由时,得到,求导,进而得到,写出切线方程;(2)将函数有两个零点,转化为函数与的图象在上有两个交点求解.小问1详解】解:当时,则,故,时,故切点为,所以在处的切线方程为,即.【小问2详解】函数有两个零点,方程在上有两个根,方程在上有两个根,函数与的图象在上有两个交点,设,则,时,;时,所以在上单调递增,在上单调递减,由,当时,当时,作图如下: 由图得,即,设,则,时,时,;所以上单调递减,在上单调递增,因为时,且,所以当时,;当时,又因为,所以的解集为综上所述.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:广东省东莞市2022届高三上学期期末考试数学试题 (含解析).doc
    链接地址:https://www.163wenku.com/p-2827726.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库