分类记数原理与分步记数原理精选教学PPT课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《分类记数原理与分步记数原理精选教学PPT课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 分类 记数 原理 分步 精选 教学 PPT 课件
- 资源描述:
-
1、GJH 10.1 分类记数原理和分步记数原理分类记数原理和分步记数原理制作:制作:泾县二中泾县二中 郭建华郭建华GJH问题问题1:. 从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。一天中,火车有4 班, 汽车有2班,轮船有3班。那么一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法?分析分析: 从甲地到乙地有3类方法, 第一类方法, 乘火车,有4种方法; 第二类方法, 乘汽车,有2种方法; 第三类方法, 乘轮船, 有3种方法; 所以 从甲地到乙地共有 4 + 2 + 3 = 9 种方法。 (一)新课引入:(一)新课引入:GJH问题问题2: 如图,由A村去B村的道路有3条,由B村去C
2、村的道路有2条。从A村经B村去C村,共有多少种不同的走法?A村B村C村北南中北南 分析分析: 从A村经 B村去C村有2步, 第一步, 由A村去B村有3种方法, 第二步, 由B村去C村有2种方法, 所以 从A村经 B村去C村共有 3 2 = 6 种不同的方法。GJH分类记数原理分类记数原理: 做一件事情,完成它可以有做一件事情,完成它可以有n类办法类办法,在第一类办法中有在第一类办法中有m1种不同的方法种不同的方法,在在第二类办法中有第二类办法中有m2种不同的方法,种不同的方法,在第,在第n类办法中有类办法中有mn种不同的方法。那么完成这件种不同的方法。那么完成这件事共有事共有 N=m1+m2+
3、mn种不同的方法。种不同的方法。分步记数原理:分步记数原理:做一件事情,完成它需要分做一件事情,完成它需要分成成n个步骤,做第一步有个步骤,做第一步有m1种不同的方法,做第种不同的方法,做第二步有二步有m2种不同的方法,种不同的方法,做第,做第n步有步有mn种不同的方法,那么完成这件事有种不同的方法,那么完成这件事有 N=m1m2mn种不同的方法种不同的方法。(二)新课:(二)新课:GJH(三)例题:(三)例题: 例例 1. 书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书, (1)从书架上任取1本书,有多少不同的取法? (2)从书架的第1,2,3层各
4、取1本书,有多少不同的取法?分析分析: (1)从书架上任取1本书,有三类办法:第一类办法, 从第1层中任取一本书, 共有 m1 = 4 种不同的方法; 第二类办法, 从第2层中任取一本书, 共有 m2 = 3 种不同的方法;第三类办法:从第3层中任取一本书,共有 m3 = 2 种不同的方法 所以, 根据分类记数原理分类记数原理, 得到不同选法种数共有 N = 4+3+2= 9 种。GJH(三)例题:(三)例题: 例例1。 书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书, (1)从书架上任取1本书,有多少不同的取法? (2)从书架的第1,2,3层各取1
5、本书,有多少不同的取法?分析分析: (2)从书架的第1,2,3层各取1本书,可以分成3个步骤完成: 第一步,从第1层取1本计算机书,有m1 = 4 种方法; 第二步,从第2层取1本文艺书,有 m2 = 3 种方法; 第三步,从第3层取1本体育书,有 m3 = 2 种方法;所以, 根据分步记数原理分步记数原理, 得到不同选法种数共有 N = 4 3 2 = 24 种。点评点评: 解题的关键是从总体上看做这件事情是“分类完成”,还是“分步完成”。“分类完成”用“分类记数原分类记数原理理”;“分步完成”用“分步记数原理分步记数原理”。GJH例例2.在所有的两位数中,个位数字大于十位数字的两位数共有多
6、少个? 分析分析1: 按个位数字是2,3,4,5,6,7,8,9分成8类,在每一类中满足条件的两位数分别是 1个,2个,3个,4个,5个,6个,7 个,8 个. 则根据分类记数原理分类记数原理共有 1 +2 +3 +4 + 5 + 6 + 7 + 8 =36 (个).分析分析2: 按十位数字是1,2,3,4,5,6,7,8分成8类,在每一类中满足条件的两位数分别是 8个,7个,6个,5个,4个,3个,2个,1个. 则根据分类记数原理分类记数原理共有 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 36 (个)GJH例例 3. 一种号码锁有4个拨号盘,每个拨号盘上有从0到9共十个
7、数字,这4个拨号盘可以组成多少个四位数的号码(各位上的数字允许重复)?首位数字不为0的号码数是多少?首位数字是0的号码数又是多少? 分析分析: 按号码位数,从左到右依次设置第一位、第二位、第三 位,第四位、需分为 四步完成; 第一步, m1 = 10; 第二步, m2 = 10; 第三步, m2 = 10,第 四步 , m4 = 10. 根据分步记数原理分步记数原理, 共可以设置N = 101010 10 = 104 种四位数的号码。 答答:首位数字不为0的号码数是N =91010 10 = 9103 种, 首位数字是0的号码数是 N = 11010 10 = 103 种。 由此可以看出, 首
8、位数字不为0的号码数与首位数字是0的号 码数之和等于号码总数。GJH例例 3. 一种号码锁有4个拨号盘,每个拨号盘上有从0到9共十个数字,这4个拨号盘可以组成多少个四位数的号码(各位上的数字允许重复)?首位数字不为0的号码数是多少?首位数字是0的号码数又是多少?问问: 若设置四个、五个、六个、十个等号码盘,号码数分别有多少种?答答:它们的号码种数依次是 104 , 105, 106, 种。GJH 点评点评: 分类记数原理分类记数原理中的“分类”要全面, 不能遗漏; 但也不能重复、交叉;“类”与“类之间是并列的、互斥的、独立的,也就是说,完成一件事情,每次只能选择其中的一类办法中的某一种方法。若
9、完成某件事情有n类办法, 即它们两两的交为空集,n类的并为全集。 分步记数原理分步记数原理中的“分步”程序要正确。“步”与“步”之间是连续的,不间 断的,缺一不可;但也不能重复、交叉;若完成某件事情需n步, 则必须且只需依次完成这n个步骤后,这件事情才算完成。 在运用“分类记数原理分类记数原理、分步记数原理分步记数原理”处理具体应用题时,除要弄清是“分类”还是“分步”外,还要搞清楚“分类”或“分步”的具体标准。在“分类”或“分步”过程中,标准必须一致标准必须一致,才能保证不重复、不遗漏。GJH 课堂练习课堂练习 1 .如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一
10、种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?GJHGJH 课堂练习课堂练习 1 .如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?解解: 按地图A、B、C、D四个区域依次分四步完成, 第一步, m1 = 3 种, 第二步, m2 = 2 种, 第三步, m3 = 1 种, 第四步, m4 = 1 种,所以根据分步记数原理分步记数原理, 得到不同的涂色方案种数共有 N = 3 2 11 = 6 种。GJH 课堂练习课堂练习 1 .如图,要给地图A、B、C、D四个区域分别涂上3种
11、不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?问问: 若用2色、3色、4色、5色等,结果又怎样呢? 答答:它们的涂色方案种数分别是 0, 4322 = 48, 5433 = 180种等。GJH 2.如图,该电路,从A到B共有多少条不同的线路可通电?AB1.ABAB2.ABAB3.BA4.BABABA5.ABABAB6.BABABA7.ABABAB8.ABABABGJH解解: 从总体上看由A到B的通电线路可分三类, 第一类, m1 = 3 条 第二类, m2 = 1 条 第三类, m3 = 22 = 4, 条 所以, 根据分类记数原理分类记数原理
12、, 从A到 B共有 N = 3 + 1 + 4 = 8 条不同的线路可通电。 当然,也可以把并联的4个看成一类,这样也可分2类求解。ABGJHm2m2ABm1mn.ABm1mn点评点评: 我们可以把分类分类记数原理记数原理看成“并联电路”;分步记数原理分步记数原理看成“串联电路”。如图:GJH3.如图,一蚂蚁沿着长方体的棱,从的一个顶点爬到相对的另一个顶点的最近路线共有多少条?GJH 解解:如图,从总体上看,如,蚂蚁从顶点A爬到顶点C1有三类方法,从局部上看每类又需两步完成,所以, 第一类, m1 = 12 = 2 条 第二类, m2 = 12 = 2 条 第三类, m3 = 12 = 2 条
展开阅读全文