书签 分享 收藏 举报 版权申诉 / 53
上传文档赚钱

类型生物物理课件.pptx

  • 上传人(卖家):三亚风情
  • 文档编号:2823921
  • 上传时间:2022-05-29
  • 格式:PPTX
  • 页数:53
  • 大小:2.72MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《生物物理课件.pptx》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    生物 物理 课件
    资源描述:

    1、 Gene Prediction 王王 秀秀 杰杰中科院遗传发育所中科院遗传发育所Ideal caseReal worldWhat is a gene?Wilhelm Johannsens definition of a gene :The word gene was first used by Wilhelm Johannsen in 1909, based on the concept developed by Gregor Mondel in 1866. “The special conditions, foundations and determiners which are pres

    2、ent in the gametes (配子配子) in unique, separate and thereby independent ways by which many characteristics of the organism are specified.” Johannsen, W. (1909) Biol. Philos. 4: 303-329.What is a gene? A gene is the basic physical and functional unit of heredity. Genes, which are made up of DNA, act as

    3、 instructions to make molecules called proteins. Old concept: A gene is a locus (or region) of DNA that encodes a functional protein or RNA product, and is the molecular unit of heredity.New definition: Gene PredictionGene prediction: To identify all genes in a genomeatgcatgcggctatgctaatgcatgcggctat

    4、gctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgggatccgatgacaatgcatgcggctatgctaatgaatggtcttgggatttaccttggaatgctaagctgggatccgatgacaatgcatgcggctatgctaatgaatggtcttgggatttaccttggaatatgctaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctggga

    5、tccgatgactatgctaagctgcggctatgctaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatcctgcggctatgctaatgaatggtcttgggatttaccttggaatgctaagctgggatccgatgacaatgcatgcggctatgctaatgaatggtcttgggatttaccttggaatatgctaatgcatgcggctatgctaagctgggaatgcatgcggctatgctaagctgggatccgatgacaatgcatg

    6、cggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcggctatgctaatgcatgcggctatgctaagctcatgcggctatgctaagctgggaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcggctatgctaatgcatgcggctatgctaagctcggctatgctaatgaatggtcttgggatttaccttggaatgctaagctgggatc

    7、cgatgacaatgcatgcggctatgctaatgaatggtcttgggatttaccttggaatatgctaatgcatgcggctatgctaagctgggaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcggctatgctaatgcatgcggctatgctaagctatgcatgcggctatgctaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgc

    8、ggctatgcaagctgggatccgatgactatgctaagctgggatccgatgacaatgcatgcggctatgctaatgaatggtcttgggatttaccttggaatgctaagctgggatccgatgacaatgcatgcggctatgctaatgaatggtcttgggatttaccttggaatatgctaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcggctatgctaatgcatgcggctatgc

    9、taagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatcctgcggctatgctaatgaatggtcttgggatttaccttggaatgctaagctgggatccgatgacaatgcatgcggctatgctaatgaatggtcttgggatttaccttggaatatgctaatgcatgcggctatgctaagctgggaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatccgatgactat

    10、gctaagctgcggctatgctaatgcatgcggctatgctaagctcatgcggctatgctaagctgggaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcggctatgctaatgcatgcggctatgctaagctcggctatgctaatgaatggtcttgggatttaccttggaatgctaagctgggatccgatgacaatgcatgcggctatgctaatgaatggtcttgggatttacc

    11、ttggaatatgctaatgcatgcggctatgctaagctgggaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcggctatgctaatgcatgcggctatgctaagctGeneGene prediction is the basic for functional studiesFinding all genes in a genome could be hardFinding all the genes is hard-

    12、Mammalian genomes are large 8000 km of 10 bp type-Only about 1% coding proteins-Non-coding RNAs are more difficult to be predictedThe structure of prokaryotic (原核生物的原核生物的) genesPromoter structure of prokaryotic (原核生物的原核生物的) genesThe structure of eukaryotic (真核生物的真核生物的) genesThe structure of eukaryot

    13、ic (真核生物的真核生物的) genesOpen Reading Frames (ORFs)Protein coding gene prediction is to detect potential coding regions by looking for ORFsSignals defining ORFs in eukaryotic genes:- Start codon: ATG- Stop codons: TAG, TGA, TAA- Splicing donor sites: usually GT- Splicing acceptor sites: usually AGUTRs a

    14、re usually defined according to expression evidenceTypes of exonsSix Frames in a DNA SequenceDNA replication occurs in the 5 -to-3 direction Six Frames in a DNA SequenceSix Frames in a DNA SequenceCodon usage selection in translationCodon usage selection in translationCodon usage in mouse genomeUnev

    15、en usage of codons may characterize a real gene! Eukaryotic ORF prediction Signals defining ORFs in eukaryotic genes:- Start codon: ATG- Stop codons: TAG, TGA, TAA- Splicing donor sites: usually GT- Splicing acceptor sites: usually AG- Coding frame- Codon usageGene syntax rulesThe common gene syntax

    16、 rules for forward-strand genes:Conceptual gene finding frameworkConceptual gene finding frameworkMethods for Eukaryotic Gene Prediction1. Ab initio method: - Only use genomic sequences as input - GENSCAN (Burge 1997; Burge and Karlin 1997) - Fgenesh (Solovyev and Salamov 1997) - Capable to predict

    17、novel genes 2. Transcript-alignment-based method: - Use cDNA, mRNA or protein similarity as major clues - ENSEMBL (Birney et al. 2004) - High accuracy - Can only find genes with transcription evidence 3. Hybrid method: - Integrate EST, cDNA, mRNA or protein alignments into ab initio method - Fgenesh

    18、+ (Solovyev and Salamov 1997) - AUFUSRUS+ (Stanke, Schoffmann et al. 2006)Methods for Eukaryotic Gene Prediction4. Comparative-genomics-based method: - Assume coding regions are more conserved Genome 1Genome 2Methods for Eukaryotic Gene Prediction4. Comparative-genomics-based method: - Assume coding

    19、 regions are more conserved - Capable to predict novel genes and non-protein coding genes - Can use transcript data to improve prediction accuracy - TWINCAN and N-SCAN (do not use transcript similarity) - TWINCAN-EST and N-SCAN-EST (use transcript similarity)Problems: - Performance depends on the ev

    20、olutionary distance between the compared sequences- Exon/intron boundaries may not be conservedAbout the ab initio gene prediction methodsDifficult to handle the following cases:-Nested/overlapped genes-Polycistronic genes-Alternative splicing-Frame-shift errors-Split start codons-Non-ATG triplet as

    21、 the start codon-Extremely short exons-Extremely long introns-Non-canonical introns-UTR intronsHidden Markov Model is a commonly used algorithm for gene predictionHidden Markov Model (HMM) Markov Property Markov Chain Markov Model Hidden Markov ModelMarkov PropertyMarkov Property is simply that give

    22、n the present state, future states are independent of the past Stochastic processes are generally considered as the collections of random variables, thus have Markov PropertyMarkov ChainMarkov Chain is a system that we can use to predict the future given the presentIn the Markov Chain, the present s

    23、tate only depends on two things: - Previous state - Probability of moving from previous state to present stateMarkov ChainTo estimate the status of studentsMarkov ChainSuppose graduate students have two types of moods: - Happy - Depressed about researchEach type of students has its own Markov chainF

    24、inally, there are three locations we can find the students: - Lab - Canteen - DormMarkov ChainMarkov Chain of happy studentsLabCanteenDormMarkov ChainMarkov Chain of depressed studentsLabCanteenDormMarkov Chain ProbabilityThe probability of observing a given sequence is equal to the product (乘积乘积) o

    25、f all observed transition probabilities. P (Canteen - Dorm - Lab) = P (Canteen) P(Dorm|Canteen) P(Lab|Dorm) P (Canteen - Lab) = P (Canteen) P(Lab|Canteen) Markov ModelA Markov model is a stochastic model used to model randomly changing system where it is assumed that the future states depends only o

    26、n the present state. LabCanteenDorm LabCanteenDormDormCanteenLab Hidden Markov ModelNow we have the general information about the relationship between the student mood and location - Mood is HiddenIf we simply observe the locations of a student, can we tell what mood he is in? - Observations are the

    27、 locations of the students- Parameters of the model are the probabilities of a student being in a particular locationHidden Markov Model (HMM)Observations: Observations: LLLC LLLCD DCLLCLLDDDDLLCLLCD DL LDDDDC CDDDDDDDDLCLLLCCLLCLLLCCLHidden state: Hidden state: HHHHHHHHHHHHDDDDDDDDDHHHHHH HHHHHHHHH

    28、HHHDDDDDDDDDHHHHHHUsing HMM to estimate student moodLab0.75Dorm0.05Lab0.4Canteen0.2Dorm0.4 Canteen0.2Hidden Markov Model (HMM)Application of HMM in gene predictionWhat do we want? Why are HMMs a good fit for gene prediction? - DNA sequences are in order which is necessary for HMMs - Enough training

    29、data for what is a gene and what is not a gene- To find coding and non-coding regions from an unlabeled string of DNA sequencesHMMs need to be trained to be truly effectiveHMMs for gene predictionHMMs for gene predictionCautions about HMMsNeed to be mindful of overfittingHMMs can be slow (needs prop

    30、er decoding)- DNA sequences can be very long thus processing them can be very time consumingStates are supposed to be independent of each other and this is NOT always true! - Need a good training set- More training data does not always mean a better model Protein-coding genes have specific evolution

    31、ary constraints- Gaps between homologous genes are multiples of three (preserve amino acid translation)- Mutations are mostly at synonymous positions- Conservation boundaries are sharp (pinpoint individual splicing signals)Features for protein coding genesDmel TGTTCATAAATAAA-TTTACAACAGTTAGCTG-GTTAGC

    32、CAGGCGGAGTGTCTGCGCCCATTACCGTGCGGACGAGCATGT-GGCTCCAGCATCTTCDsec TGTCCATAAATAAA-TTTACAACAGTTAGCTG-GTTAGCCAGGCGGAGTGTCTGCGCCCATTACCGTGCGGACGAGCATGT-GGCTCCAGCATCTTCDsim TGTCCATAAATAAA-TTTACAACAGTTAGCTG-GTTAGCCAGGCGGAGTGTCTGCGCCCATTACCGTGCGGACGAGCATGT-GGCTCCAGCATCTTCDyak TGTCCATAAATAAA-TTTACAACAGTTAGCTG-

    33、GTTAGCCAGGCGGAGTGCCTTCTACCATTACCGTGCGGACGAGCATGT-GGCTCCAGCATCTTCDere TGTCCATAAATAAA-TTTACAACAGTTAGCTG-CTTAGCCATGCGGAGTGCCTCCTGCCATTGCCGTGCGGGCGAGCATGT-GGCTCCAGCATCTTTDana TGTCCATAAATAAA-TCTACAACATTTAGCTG-GTTAGCCAGGCGGAGTGTCTGCGACCGTTCATG-CGGCCGTGA-GGCTCCATCATCTTADpse TGTCCATAAATGAA-TTTACAACATTTAGCTG

    34、-CTTAGCCAGGCGGAATGGCGCCGTCCGTTCCCGTGCATACGCCCGTGG-GGCTCCATCATTTTCDper TGTCCATAAATGAA-TTTACAACATTTAGCTG-CTTAGCCAGGCGGAATGCCGCCGTCCGTTCCCGTGCATACGCCCGTGG-GGCTCCATTATTTTCDwil TGTTCATAAATGAA-TTTACAACACTTAACTGAGTTAGCCAAGCCGAGTGCCGCCGGCCATTAGTATGCAAACGACCATGG-GGTTCCATTATCTTCDmoj TGATTATAAACGTAATGCTTTTATAA

    35、CAATTAGCTG-GTTAGCCAAGCCGAGTGGCGCC-TGCCGTGCGTACGCCCCTGTCCCGGCTCCATCAGCTTTDvir TGTTTATAAAATTAATTCTTTTAAAACAATTAGCTG-GTTAGCCAGGCGGAATGGCGCC-GTCCGTGCGTGCGGCTCTGGCCCGGCTCCATCAGCTTCDgri TGTCTATAAAAATAATTCTTTTATGACACTTAACTG-ATTAGCCAGGCAGAGTGTCGCC-TGCCATGGGCACGACCCTGGCCGGGTTCCATCAGCTTT * * * * * * * * * * *

    36、 * * * * * * * * * * * SpliceREALITYPREDICTIONExon LevelWRONGEXONCORRECTEXONMISSINGEXONSn =Sensitivity(灵敏度灵敏度)number of correct exonsnumber of actual exonsSp =Specificity(特异性特异性)number of correct exonsnumber of predicted exonsMeasure of prediction accuracyTNFPFNTNTNTPFNTPFNREALITYPREDICTIONPREDICTIO

    37、NREALITYTPFNTNFPccncncSn = TP / (TP + FN)Sp = TP / (TP + FP)SensitivitySpecificityNucleotide LevelMeasure of prediction accuracyC: correct; nc: incorrect; TP: true positive; FP: false positive; FN: false negative; TN: true negativeGene prediction softwareExample of gene findersExample of gene finder

    38、sExample of gene findersAccuracy of Gene Prediction Gene prediction is easier in microbial genomesWhy? Smaller genomesSimpler gene structuresMore sequenced genomes! (for comparative approaches)Methods? Previously, mostly HMM-based Now: similarity-based methodsbecause so many genomes are availableGene prediction in prokaryotesSummaryNothing is perfectEach gene identification approach has its own features and limitationsGenome annotation is an on-going process, and the accuracy is bring improved along with the improvement of methods and accumulation of the evidence data

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:生物物理课件.pptx
    链接地址:https://www.163wenku.com/p-2823921.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库