书签 分享 收藏 举报 版权申诉 / 26
上传文档赚钱

类型3-1不定积分的换元法-PPT课件.ppt

  • 上传人(卖家):三亚风情
  • 文档编号:2820860
  • 上传时间:2022-05-29
  • 格式:PPT
  • 页数:26
  • 大小:1.55MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《3-1不定积分的换元法-PPT课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    不定积分 换元法 PPT 课件
    资源描述:

    1、第二类换元法第二类换元法第一类换元法第一类换元法xxxfd)()(yyfd)(设, )()(yfyF)(xy可导,xxxfd)()(CxF)()(d)(xyyyf)()(xyCyF)(dxFxxxfd)()(则有第三章积分的计算第三章积分的计算3-1 不定积分的换元法不定积分的换元法dxxyF)()(1. 不定积分第一换元法不定积分第一换元法)(d)(xxfCxF)(或写成例例1. 求).1(d)(mxbxam解解: 令,bxau则,ddxau 故原式原式 =muuad1a1Cumm1111)() 1(1mbxamaC注注: 当1m时bxaxdCbxaaln122)(1d1axxa例例2. 求

    2、.d22xax解解:22dxax,axu 令则xaud1d21uuda1Cuaarctan1Caxa)arctan(1想到公式21duuCu arctan)(ax例例3. 求).0(d22axax21duu想到Cu arcsin解解:2)(1daxax)(d)(xxf(凑微分法或配元法)xxxfd)()(2)(1)(daxaxCax arcsin22dxax例例4. 求.dtanxx解解:xxxdcossinxxcoscosdCx cosln?dcotxxxxxsindcosCx sinlnxxsinsindxxdtan类似Caxaxaln21例例5. 求.d22axx解解:221ax )(a

    3、xax)()(axaxa21)11(21axaxa 原式原式 =a21axxaxxdda21axax)(da21ax lnax lnCaxax)( d.|ln21d22Cxaxaaxax类似地类似地常用的几种配元形式常用的几种配元形式: xbxafd)() 1 ( )(bxaf)(dbxa a1xxxfnnd)()2(1)(nxfnxdn1xxxfnd1)()3()(nxfnxdn1nx1万能凑幂法xxxfdcos)(sin)4()(sin xfxsindxxxfdsin)(cos)5()(cosxfxcosdxxxfdsec)(tan)6(2)(tan xfxtandxeefxxd)()7(

    4、)(xefxedxxxfd1)(ln)8()(ln xfxlnd例例6. 求.)ln21 (dxxxxln21xlnd解解: 原式 =xln2121)ln21 (dxCx ln21ln21例例7. 求.d3xxex解解: 原式 =xexd23)3d(323xexCex332例例8. 求.dsec6xx解解: 原式 =xdxx222sec) 1(tanxtandxxxtand) 1tan2(tan24x5tan51x3tan32xtanC例例9. 求.1dxex解法解法1xex1dxeeexxxd1)1 (xdxxee1)1 (dxCex)1ln(解法解法2 xex1dxeexxd1xxee1)

    5、1 (dCex)1ln()1(ln)1ln(xxxeee两法结果一样xxsin11sin1121例例10. 求.dsecxx解法解法1 xxdsecxxxdcoscos2xx2sin1sindxsindxsin1ln21Cxsin1lnCxxsin1sin1ln21xxtansec解法解法 2 xxdsecxxdsecxxtansec )tan(secxxxxxxxxdtansectansecsec2)tan(secdxx Cxxtansecln同样可证xxdcscCxxcotcscln或xxdcscCx2tanln)2cos2cos21 (241xx 例例11 . 求.dcos4xx解解:2

    6、24)(coscosxx 2)22cos1(x)2cos21 (24cos141xx)4cos2cos2(212341xxxxdcos4xxxd)4cos2cos2(21234141xd23)2d(2cosxx)4(d4cos81xxx83x2sin41x4sin321C例例12 求dxmxnxsinsin解解dxmxnxsinsindxxnmxnm)cos()cos(21dxxnm)cos(21dxxnm)cos(21xnmdxnmnm)()cos(121)()cos(1xnmdxnmnm.)sin(1)sin(121Cxnmnmxnmnm小结小结常用简化技巧:(1) 分项积分:(2) 降低

    7、幂次:(3) 统一函数: 利用三角公式 ; 配元方法(4) 巧妙换元或配元等xx22cossin1; )2cos1 (sin212xx; )2cos1 (cos212xx万能凑幂法xxxfnnd)(1nnnxxfd)(1xxxfnd1)(nxnnxxfnd)(11利用积化和差; 分式分项;利用倍角公式 , 如. 不定积分第二换元法不定积分第二换元法第二类换元法第二类换元法第一类换元法第一类换元法xxxfd)()(yyfd)(第一类换元法解决的问题难求xxxfd)()(若所求积分xxxfd)()(易求,则得第二类换元积分法 .难求,yyfd)()(xy易求)(xyyyfd)(dxxf)()(tx

    8、即即tttfd)()(CtF)(.)(1CxF)(1xt可导要求变量替换函数在使用第二换元法时,)(tx.的函数换成在最后的结果中要将且一定有反函数,并且xt例例13. 求. )0(d22axxa解解: 令, ),(,sin22ttax则taaxa22222sintacosttaxdcosd 原式tacosttadcosttadcos22Ca242sin2ttax22xa taxarcsinCxax222122atttcossin22sin2axaxa22例例14. 求. )0(d22aaxx解解: 令, ),(,tan22ttax则22222tanataaxtasecttaxdsecd2 原

    9、式 ta2sectasectdttdsec1tanseclnCttax22ax tln22ax a)ln(1aCCCaxx22lnxa1C例例15. 求. )0(d22aaxx解解:,时当ax 令, ),0(,sec2ttax则22222secataaxtatanxdtttadtansec 原式td ttatansectatanttdsec1tanseclnCttax22ax t1 lnCCaxx22ln)ln(1aCC22ax axa,时当ax令,ux,au 则于是22daxx22dauuCaxx22ln22daxx,时ax 122lnCauu122lnCaxx1222lnCaxxa)ln2

    10、(1aCCCaxx22ln小结小结:1. 第二类换元法常见类型第二类换元法常见类型: ,d),() 1 (xbaxxfn令nbxat,d),()2(xxfndxcbxa令ndxcbxat,d),()3(22xxaxf令taxsin或taxcos,d),()4(22xxaxf令taxtan或taxsh,d),()5(22xaxxf令taxsec或taxch第三节讲,d)()6(xafx令xat (3),(4),(5)三角代换法三角代换法xxdtan)16(xxdcot)17(xxdsec)18(xxdcsc)19(Cx coslnCx sinlnCxx tanseclnCxxcotcscln2.

    11、 常用基本积分公式的补充 xxad1)20(22xaxd1)21(22Caxaarctan1Caxaxaln21xxad1)22(22xaxd1)23(22CaxarcsinCaxx)ln(22xaxd1)24(22Caxx22ln.32d2 xxx解解: 原式xxd2) 1(122)2() 1( dx21arctan21xC公式 (20) )例例16. 求例例21. 求.94d2xxI解解:223)2()2(d21xxICxx942ln212 公式 (23) )例例17. 求.1d2xxx解解: 原式 =22)()()(d21x公式 (22)2521xCx512arcsin例例18. 求.1d2xex解解: 原式xxee21dCexarcsin公式 (22)习题习题3-1 双数;习题双数;习题3-2 双数双数.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:3-1不定积分的换元法-PPT课件.ppt
    链接地址:https://www.163wenku.com/p-2820860.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库