人教版九年级数学上册第22章二次函数全章教学课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《人教版九年级数学上册第22章二次函数全章教学课件.pptx》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 九年级 数学 上册 22 二次 函数 教学 课件 下载 _九年级上册_人教版(2024)_数学_初中
- 资源描述:
-
1、人教版版九年级数学上册公开课教学课件授课人: 26.1.126.1.1二次函数二次函数知识回顾知识回顾1.一元二次方程的一般形式是什么?一元二次方程的一般形式是什么?2。一次函数的定义是什么?。一次函数的定义是什么?ax2+bx+c=0形如形如y=kx+b(其中其中k ,b为为常数且常数且k0)的函数叫做的函数叫做x 的一次函数的一次函数(a0)二次函数的概念二次函数的概念温馨提示:同桌交温馨提示:同桌交流,互相帮助!流,互相帮助! 试一试:试一试:探究问题探究问题1要用总长为要用总长为20米的铁栏杆,一面靠墙,围成一个矩形的花圃。怎样围法,才能米的铁栏杆,一面靠墙,围成一个矩形的花圃。怎样围
2、法,才能使围成的面积最大?使围成的面积最大? 1 设矩形靠墙的一边设矩形靠墙的一边AB的长的长,矩形的面积,矩形的面积y2能用含能用含x的代数式来表示的代数式来表示y吗?吗?2 试填试填下面下面的表的表3 x的值可以任意取?有限定范围吗?的值可以任意取?有限定范围吗?4 我们发现我们发现y是是x的函数,试写出这个函数的关系式的函数,试写出这个函数的关系式。 BCDAB的长()的长()的长()的长()面积(面积()Axx20-2xy=x(20-2x) (0 x10)即:即:Y=-2x2+20 x (0 x10)1818321442161050848642432180 x102探究问题探究问题2某
3、商店将每商品进价为某商店将每商品进价为8元的商品按每元的商品按每10元出售,一天元出售,一天可售出约可售出约100件。该店想通过降低售价、增加销售量的件。该店想通过降低售价、增加销售量的办法来提高利润。经市场调查,发现这种商品单价每降办法来提高利润。经市场调查,发现这种商品单价每降低低0.1元,其销售量可增加约元,其销售量可增加约10件。将这种商品的售价件。将这种商品的售价降低多少时,能使销售利润最大?降低多少时,能使销售利润最大?1 设每件商品降低设每件商品降低x元(元(0 x2),该商品每天的利润),该商品每天的利润为为y,y是是x的函数吗?为什么要限定的函数吗?为什么要限定x的值?的值?
4、2 怎样写出该关系式?怎样写出该关系式? 试一试:试一试:温馨提示:同桌交流,温馨提示:同桌交流,互相帮助!互相帮助!单件利润单件利润(元)(元)每天销量每天销量(件)(件)每天利润(每天利润(y元元)降价降价x元前元前降价降价x元后元后(-)10-81-x-8(10-x-8)(100+100 x)100+100 xy=(10-x-8)(100+100 x) 即即y=-100 x2+100 x+200( 0 x2)每天利润每天利润= 单件利润单件利润每天销量每天销量讨论讨论得到的两个函数关系式有什么特点得到的两个函数关系式有什么特点?温馨提示:同桌交流,互相帮助!温馨提示:同桌交流,互相帮助!
5、答答(1)右边都是关于右边都是关于x的整式的整式. (2)自变量自变量x的最高次数是的最高次数是2. 即都是自变量的二次整式!即都是自变量的二次整式!观察观察()() Y=-2x2+20 x (0 x10) ()()y=-100 x2+100 x+200 ( 0 x2)提问提问对比一次函数归纳二次函数的定义?对比一次函数归纳二次函数的定义?概念引入概念引入二次函数的定义:二次函数的定义:形如形如y=ax2+bx+c(a,b,c是常数,是常数,a0)的函数叫的函数叫做做x的二次函数的二次函数 思考:思考:1. 1. 由问题由问题1 1和和2 2你认为判断二次函数的你认为判断二次函数的关键是什么?
6、关键是什么?判断一个函数是否是二次函数的关键是:看判断一个函数是否是二次函数的关键是:看二次项的系数是否为二次项的系数是否为0 0驶向胜利的彼岸提问:提问:1 1上述概念中的上述概念中的a a为什么不能是为什么不能是0 0?2. 2. 对于二次函数对于二次函数y=axy=ax2 2+bx+c+bx+c中的中的b b和和c c可否为可否为0 0?若?若b b和和c c各自为各自为0 0或均为或均为0 0,上述函数的式子可以改写成怎样?你,上述函数的式子可以改写成怎样?你认为它们还是不是二次函数?认为它们还是不是二次函数? 思考:思考:2. 二次函数的一般式二次函数的一般式yax2bxc(a0)与
7、一元二次方)与一元二次方程程axbxc0(a0)有什么)有什么联系和区别?联系和区别?驶向胜利的驶向胜利的彼岸彼岸联系联系(1)(1)等式一边都是等式一边都是axax2 2bxbxc c且且a a 0 0 (2)(2)方方程程axax2 2bxbxc=0c=0可以看成是函数可以看成是函数y= axy= ax2 2bxbxc c中中y=0y=0时得到的时得到的. .区别区别: :前者是函数前者是函数. .后者是方程后者是方程. .等式另一边前者等式另一边前者是是y,y,后者是后者是0 0知识运用知识运用 例例1:下列函数中,哪些是二次函数?下列函数中,哪些是二次函数? (1)y=3x-1 ( )
8、 (2)y=3x2 ( ) (3)y=3x3+2x2 ( ) (4)y=2x2-2x+1( ) (5)y=x-2+x ( ) (6)y=x2-x(1+x) ( )不是不是是是不是不是不是不是是是不是不是驶向胜利的彼岸知识运用知识运用m22m-1=2 m+1 0 m=3例2:m取何值时,函数取何值时,函数y= (m+1)x 是二次是二次函数?函数? 解解:由题意得由题意得驶向胜利的彼岸练练 习习1.已知直角三角形两条直角边长的和为已知直角三角形两条直角边长的和为10cm.(1)当它的一条直角边长为)当它的一条直角边长为4.5cm时,求这个时,求这个直角三角形的面积;直角三角形的面积;(2)设这个
9、直角三角形的一条直角边长为)设这个直角三角形的一条直角边长为xcm,面积为面积为 ,求,求S与与x的函数关系式。的函数关系式。驶向胜利的彼岸练练 习习2.已知正方体的棱长为已知正方体的棱长为xcm,面积为面积为 ,体积,体积为为 。(1)分别写出)分别写出S与与x,V与与x之间的函数关系式。之间的函数关系式。(2)这两个函数中,哪一个是)这两个函数中,哪一个是x的二次函数?的二次函数?小结 拓展驶向胜利的彼岸 你认为今天这节课最需要你认为今天这节课最需要掌握的是掌握的是 _ 。 初三(下)数学课本第4页习题27.11. 2. 3. 4.独立独立作业作业知识的升华祝你成功!祝你成功!结束寄语生活
10、是数学的源泉生活是数学的源泉. .下课了!探索是数学的生命线探索是数学的生命线. .人教版版九年级数学上册公开课教学课件授课人:【学习目标】【学习目标】 1 1、结合具体情境体会二次函数的意义,理解、结合具体情境体会二次函数的意义,理解二次函数的有关概念;二次函数的有关概念; 2 2、能够表示简单变量之间的二次函数关系;、能够表示简单变量之间的二次函数关系;【学习重、难点】【学习重、难点】重点:能够表示简单变量之间的二次函数关系重点:能够表示简单变量之间的二次函数关系. .难点:理解二次函数的有关概念难点:理解二次函数的有关概念. .一、自学指导一、自学指导1 1、自学、自学1:自学课本自学课
11、本P2 2-3页,页,自学自学“思考思考”,理解二次函数的概念及意义,完成填空。,理解二次函数的概念及意义,完成填空。5 5分钟分钟总结归纳:总结归纳:一般地,形如一般地,形如 (a,b,ca,b,c是常数,且是常数,且a0a0)的)的函数叫做二次函数,其中二次项系数、一次项系数和常数项分别为函数叫做二次函数,其中二次项系数、一次项系数和常数项分别为 。现在我们已尝过的函数有现在我们已尝过的函数有 , 、 ,其表,其表达式分别是达式分别是 、。2yaxbxca a、b b、c c有一次函数有一次函数反比例函数反比例函数二次函数二次函数(0)yaxb aba、 为常数,且(0)kykx为常数,且
12、k2(0)yaxbxc abca、 、 为常数,且二、自学检测:二、自学检测:学生自主完成,小组内展示、点评,教师巡视。学生自主完成,小组内展示、点评,教师巡视。5分钟分钟;D D、;B B、A A、;C C、1 1、下列函数中,是二次函数的下列函数中,是二次函数的有有 2 2、二次函数、二次函数中,二次项系数是中,二次项系数是,一次项系数是,一次项系数是,常数项是常数项是。3 3、半径为、半径为R R的圆,半径增加的圆,半径增加x x,圆的面积增加,圆的面积增加y y,则,则y y与与x x之间的函数关之间的函数关系式为系式为 点拨精讲:点拨精讲:判断二次函数关系要紧扣定义。判断二次函数关系
13、要紧扣定义。A A、B B、C C-1-12 20 0探究探究1 若若是二次函数,则是二次函数,则 。b2探究探究2 某超市购进一种单价为某超市购进一种单价为4040元的篮球,如果以单价元的篮球,如果以单价5050元出售,那么每月可售出元出售,那么每月可售出500500个,根据销售经验,售价每提高个,根据销售经验,售价每提高1 1元,销售量相应减少元,销售量相应减少1010个,如果超市将篮球售个,如果超市将篮球售价定为价定为x x元(元(x50 x50),每月销售这种篮球获利),每月销售这种篮球获利y y元。元。 求求y y与与x x之间的函数关系式;之间的函数关系式; 超市计划下月销售这种篮
14、球获利超市计划下月销售这种篮球获利80008000元,又要吸引更多的顾客,那么这种篮球元,又要吸引更多的顾客,那么这种篮球的售价为多少元?的售价为多少元?由题意得:由题意得: 化化简得简得 要吸引更多的顾客,要吸引更多的顾客,售价应定为售价应定为6060元元. .解:解:(5050 x x 0时,开口向时,开口向上上; 当当a0ao即即:直线直线:x=0,(3)、增减性、增减性a0a0y随随x的增大而增大的增大而增大。在对称轴的左侧在对称轴的左侧(x0):当当a0时时当当a0时时,在对称轴的左侧在对称轴的左侧(x0): y随随x的增大而减小的增大而减小。 当当 x=0 时时, y最小值最小值=
15、o. 当当 x=0 时时, y最大值最大值=o. 试一试:试一试:1、函数、函数y=2x2的图象的开口的图象的开口 ,对称轴,对称轴是是 ,顶点是,顶点是 ;在对称轴的左;在对称轴的左侧,侧,y随随x的增大而的增大而 ,在对称轴的右侧,在对称轴的右侧,y随随x的增大而的增大而 ; 2、函数、函数y=-3x2的图象的开口的图象的开口 ,对称轴,对称轴是是 ,顶点是,顶点是 ;在对称轴的左;在对称轴的左侧,侧,y随随x的增大而的增大而 ,在对称轴的右侧,在对称轴的右侧,y随随x的增大而的增大而 ; 3、观察函数观察函数y=xy=x2 2的图象,则下列判断中正确的是的图象,则下列判断中正确的是 (
16、)A A 若若a,ba,b互为相反数,则互为相反数,则x=ax=a与与x=bx=b的函数值相等。的函数值相等。B B 对于同一个自变量对于同一个自变量x x,有两个函数值与它对应。,有两个函数值与它对应。C C 对任一个实数对任一个实数y y,有两个,有两个x x和它对应。和它对应。D D 对任意实数对任意实数x x,都有,都有y y0 0 xyoA例例1、已知、已知y =(m+1)x 是二次函数且其是二次函数且其 图象开口向下图象开口向下(1)求)求m的值和函数解析式。的值和函数解析式。(2)x在何范围内,在何范围内,y随随x的增大而增大的增大而增大? y随随x的增大而减小的增大而减小? x
17、yo练习一练习一2、已知函数、已知函数是二次函数,且开口向上。是二次函数,且开口向上。求求m的值及二次函数的解析式,并回答的值及二次函数的解析式,并回答y随随x的变化的变化规律规律1、已知、已知y=(k+2)x 是二次函数,是二次函数, 且当且当x0时,时,y随随X增大而增大,则增大而增大,则k= ;k2+k-4例例2、函数函数y=axy=ax2 2(a0)(a0)与直线与直线y=2x-3y=2x-3交于点交于点(1,b).(1,b).求:求:(1)a(1)a与与b b的值;的值;(2)(2)求抛物线求抛物线y=axy=ax2 2的解析式,并求顶点坐标和对称轴;的解析式,并求顶点坐标和对称轴;
18、(3)x(3)x取何值时,二次函数取何值时,二次函数y=axy=ax2 2的的 y y随随x x增大而增大?增大而增大?(4)(4)求抛物线与直线求抛物线与直线y=-2y=-2的两交点与顶点构成的三角形的两交点与顶点构成的三角形 的面积。的面积。OABxyy=-2先代入直线,得到交点再代入二次函数先代入直线,得到交点再代入二次函数例例3 3、求抛物线求抛物线y=4xy=4x2 2与直线与直线y=3x+1y=3x+1的的 交点坐标交点坐标yxO求抛物线与直线的求抛物线与直线的交点坐标交点坐标的方法:的方法:两解析式联列两解析式联列方程方程组组 y=4x2 y=3x+1回顾练习及提高:回顾练习及提
19、高:1、二次函数的顶点坐标是、二次函数的顶点坐标是,对称轴是,对称轴是,图像在轴的图像在轴的(顶点除外),开口方向向(顶点除外),开口方向向,当,当时,随着的增大而减小,当时,随着的增大而减小,当时,随着时,随着的增大而增大。的增大而增大。2、抛物线,当、抛物线,当时,随着的增大而时,随着的增大而减小,当减小,当时,函数有最时,函数有最值,此时值,此时。3、根据二次函数的图像的性质,回答下列问题:、根据二次函数的图像的性质,回答下列问题:(1)如果点)如果点P在抛物线上,那么点在抛物线上,那么点Q也在也在这条抛物线上吗?为什么?这条抛物线上吗?为什么?(2)当时,设自变量,的对应值分别为,)当
20、时,设自变量,的对应值分别为,当时,必有吗?为什么?当时,必有吗?为什么?小结:小结:(1) 顶点都在顶点都在原点原点;对称轴是对称轴是y轴轴()当()当a0时,开口向时,开口向上上;当;当a0时,开口时,开口向向下下()()当当a0时时,在对称轴的左侧在对称轴的左侧:y随随x的增大而减小;的增大而减小;在对称轴的右侧在对称轴的右侧:y随随x的增大而增大的增大而增大。当当a0a0图图象象开口方向开口方向顶点坐标顶点坐标对称轴对称轴增增减减性性极值极值xyOyxO向上向下(0 ,0)(0 ,0)y轴y轴当x0时,y随着x的增大而增大。 当x0时,y随着x的增大而减小。 x=0时,y最小=0 x=
21、0时,y最大=0抛物线y=ax2 (a0)的形状是由|a|来确定的,一般说来, |a|越大,抛物线的开口就越小.问题1我们先来看几个简单的例子。在同一直角坐标系中,列表x-3-3 -2-2-1-10 01 12 23 3列表x-3-3 -2-2-1-10 01 12 23 32 20 02 2列表x-3-3 -2-2-1-10 01 12 23 32 20 02 23 31 13 3这两个函数有什么不一样的地方?x-3-3 -2-2-1-10 01 12 23 32 20 02 23 31 13 3描点x-3-3 -2-2-1-10 01 12 23 32 20 02 23 31 13 3描点
22、x-3-3 -2-2-1-10 01 12 23 32 20 02 23 31 13 3这两个函数的图象的形状相同吗?相同连线你会比较这两个函数吗?x-3-3 -2-2-1-10 01 12 23 32 20 02 23 31 13 3函数y= x2+1的图象与y= x2的图象的位置有什么关系?函数y= x2+1的图象可由y= x2的图象沿y轴向上平移1个单位长度得到.y=-x2-2y=-x2+3y=-x2函数y=-x2-2的图象可由y=-x2的图象沿y轴向下平移2个单位长度得到.函数y=-x2+3的图象可由y=-x2的图象沿y轴向上平移3个单位长度得到.图象向上移还是向下移,移多少个单位长度
23、,有什么规律吗? 函数y=ax2 (a0)和函数y=ax2+k (a0)的图象形状 ,只是位置不同;当k0时,函数y=ax2+k的图象可由y=ax2的图象向 平移 个单位得到,当k0时,抛物线y=ax2+k的开口 ,对称轴是 ,顶点坐标是 ,在对称轴的左侧,y随x的增大而 ,在对称轴的右侧,y随x的增大而 ,当x= 时,函数取得最 值,这个值等于 ; 当a0a0开口方向开口方向顶点坐标顶点坐标对称轴对称轴增增减减性性极值极值向上向下(0 ,k)(0 ,k)y轴y轴当x0时,y随着x的增大而增大。 当x0时,y随着x的增大而减小。 x=0时,y最小=kx=0时,y最大=k抛物线y=ax2 +k
24、(a0)的图象可由y=ax2的图象通过上下平移得到.练习开口方向开口方向对称轴对称轴顶点坐标顶点坐标a0a0a0a0a0a0a0图象图象开口开口对称性对称性顶点顶点增减性增减性回顾:二次函数y=ax2+k的性质开口向上开口向下|a|越大,开口越小关于y轴对称顶点是最低点顶点是最高点当x0时,y随x的增大而增大k0k0k0(0,k)当x0时,y随x的增大而减小例3在同一直角坐标系中,列表x-3-3 -2-2-1-10 01 12 23 3列表x-3-3 -2-2-1-10 01 12 23 32 20 02 2列表x-3-3 -2-2-1-10 01 12 23 32 20 02 28 82 2
25、0 0这两个函数有什么不一样的地方?x-3-3 -2-2-1-10 01 12 23 32 20 02 28 82 20 0描点x-3-3 -2-2-1-10 01 12 23 32 20 02 28 82 20 0连线这两个函数的图象的形状相同吗?相同你会比较这两个函数吗?x-3-3 -2-2-1-10 01 12 23 32 20 02 28 82 20 0函数y= (x-2)2的图象与y= x2的图象的位置有什么关系?函数y= (x-2)2的图象可由y= x2的图象沿x轴向右平移2个单位长度得到.函数y=-(x-2)2的图象可由y=-x2的图象沿x轴向右平移2个单位长度得到.函数y=-(
展开阅读全文