2021年全国新高考Ⅰ卷数学试题(原卷版及答案解析版).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2021年全国新高考Ⅰ卷数学试题(原卷版及答案解析版).doc》由用户(雁南飞1234)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考数学试题及答案 下载 _历年真题_高考专区_数学_高中
- 资源描述:
-
1、 2021年普通高等学校招生全国统一考试数学本试卷共4页,22小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名考生号考场号和座位号填写在答题卡上.用2B铅笔将试卷类型(A)填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑:如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无
2、效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,则( )A. B. C. D. 2. 已知,则( )A. B. C. D. 3. 已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为( )A. B. C. D. 4. 下列区间中,函数单调递增的区间是( )A. B. C. D. 5. 已知,是椭圆:的两个焦点,点在上,则的最大值为( )A. 13B. 12C. 9D. 66. 若,则( )A B. C. D. 7. 若过点可以作曲线的两条切线,则(
3、)A. B. C. D. 8. 有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( )A. 甲与丙相互独立B. 甲与丁相互独立C. 乙与丙相互独立D. 丙与丁相互独立二选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 有一组样本数据,由这组数据得到新样本数据,其中(为非零常数,则( )A. 两组样
4、本数据的样本平均数相同B. 两组样本数据样本中位数相同C. 两组样本数据的样本标准差相同D. 两组样数据的样本极差相同10. 已知为坐标原点,点,则( )A. B. C. D. 11. 已知点在圆上,点、,则( )A. 点到直线的距离小于B. 点到直线的距离大于C. 当最小时,D. 当最大时,12. 在正三棱柱中,点满足,其中,则( )A. 当时,的周长为定值B. 当时,三棱锥的体积为定值C. 当时,有且仅有一个点,使得D. 当时,有且仅有一个点,使得平面三填空题:本题共4小题,每小题5分,共20分.13. 已知函数是偶函数,则_.14. 已知为坐标原点,抛物线:()的焦点为,为上一点,与轴垂
5、直,为轴上一点,且,若,则的准线方程为_.15. 函数的最小值为_.16. 某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为的长方形纸,对折1次共可以得到,两种规格的图形,它们的面积之和,对折2次共可以得到,三种规格的图形,它们的面积之和,以此类推,则对折4次共可以得到不同规格图形的种数为_;如果对折次,那么_.四解答题:本题共6小题,共70分.解答应写出文字说明证明过程或演算步骤.17. 已知数列满足,(1)记,写出,并求数列的通项公式;(2)求的前20项和.18. 某学校组织“一带一路”知识竞赛,有A,B两类问题,每位参加比赛的同学先在两类问题中选择一类并从中
6、随机抽取一个问题回答,若回答错误则该同学比赛结束:若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分:B类问题中的每个问题回答正确得80分,否则得0分,己知小明能正确回答A类问题的概率为0.8,能正确回答B类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A类问题,记为小明的累计得分,求的分布列;(2)为使累计得分期望最大,小明应选择先回答哪类问题?并说明理由.19. 记是内角,的对边分别为,.已知,点在边上,.(1)证明:;(2)若,求.20. 如图,在三棱锥中,平面平面,为的中点.
7、(1)证明:;(2)若是边长为1等边三角形,点在棱上,且二面角的大小为,求三棱锥的体积.21. 在平面直角坐标系中,已知点、,点的轨迹为.(1)求的方程;(2)设点在直线上,过两条直线分别交于、两点和,两点,且,求直线的斜率与直线的斜率之和.22. 已知函数.(1)讨论的单调性;(2)设,为两个不相等的正数,且,证明:.2021年普通高等学校招生全国统一考试数学本试卷共4页,22小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名考生号考场号和座位号填写在答题卡上.用2B铅笔将试卷类型(A)填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.作
8、答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑:如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,则( )A. B. C. D. 【答案】B【解析】【分析】利用交集的定义可求.【详解】由题设有,故
9、选:B .2. 已知,则( )A. B. C. D. 【答案】C【解析】【分析】利用复数的乘法和共轭复数的定义可求得结果.【详解】因为,故,故故选:C.3. 已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为( )A. B. C. D. 【答案】B【解析】【分析】设圆锥的母线长为,根据圆锥底面圆的周长等于扇形的弧长可求得的值,即为所求.【详解】设圆锥的母线长为,由于圆锥底面圆的周长等于扇形的弧长,则,解得.故选:B.4. 下列区间中,函数单调递增的区间是( )A. B. C. D. 【答案】A【解析】【分析】解不等式,利用赋值法可得出结论.【详解】因为函数的单调递增区间为,对于函
10、数,由,解得,取,可得函数的一个单调递增区间为,则,A选项满足条件,B不满足条件;取,可得函数的一个单调递增区间为,且,CD选项均不满足条件.故选:A.【点睛】方法点睛:求较为复杂的三角函数的单调区间时,首先化简成形式,再求的单调区间,只需把看作一个整体代入的相应单调区间内即可,注意要先把化为正数5. 已知,是椭圆:的两个焦点,点在上,则的最大值为( )A. 13B. 12C. 9D. 6【答案】C【解析】【分析】本题通过利用椭圆定义得到,借助基本不等式即可得到答案【详解】由题,则,所以(当且仅当时,等号成立)故选:C【点睛】本题关键在于正确理解能够想到求最值的方法,即通过基本不等式放缩得到6
11、. 若,则( )A. B. C. D. 【答案】C【解析】【分析】将式子进行齐次化处理,代入即可得到结果【详解】将式子进行齐次化处理得:故选:C【点睛】易错点睛:本题如果利用,求出的值,可能还需要分象限讨论其正负,通过齐次化处理,可以避开了这一讨论7. 若过点可以作曲线的两条切线,则( )A. B. C. D. 【答案】D【解析】【分析】根据导数几何意义求得切线方程,再构造函数,利用导数研究函数图象,结合图形确定结果【详解】在曲线上任取一点,对函数求导得,所以,曲线在点处的切线方程为,即,由题意可知,点在直线上,可得,令,则.当时,此时函数单调递增,当时,此时函数单调递减,所以,由题意可知,直
12、线与曲线的图象有两个交点,则,当时,当时,作出函数的图象如下图所示:由图可知,当时,直线与曲线的图象有两个交点.故选:D.【点睛】数形结合是解决数学问题常用且有效的方法8. 有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( )A. 甲与丙相互独立B. 甲与丁相互独立C. 乙与丙相互独立D. 丙与丁相互独立【答案】B【解析】【分析】根据独立事件概率关系逐一判断【详解】 ,故选:B【点睛】判
13、断事件是否独立,先计算对应概率,再判断是否成立二选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 有一组样本数据,由这组数据得到新样本数据,其中(为非零常数,则( )A. 两组样本数据的样本平均数相同B. 两组样本数据的样本中位数相同C. 两组样本数据的样本标准差相同D. 两组样数据的样本极差相同【答案】CD【解析】【分析】A、C利用两组数据的线性关系有、,即可判断正误;根据中位数、极差的定义,结合已知线性关系可判断B、D的正误.【详解】A:且,故平均数不相同,错误;B:若第一组中位数为,则第二组的中
展开阅读全文