遗传算法PPT课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《遗传算法PPT课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 遗传 算法 PPT 课件
- 资源描述:
-
1、第4章 基于遗传算法的随机优化搜索4.1 4.1 基本概念基本概念4.2 4.2 基本遗传算法基本遗传算法4.3 4.3 遗传算法应用举例遗传算法应用举例4.4 4.4 遗传算法的特点与优势遗传算法的特点与优势 第 4 章 基于遗传算法的随机优化搜索 v遗传算法(Genetic AlgorithmGA),是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,它是由美国Michigan大学的J.Holland教授于1975年首先提出的遗传算法作为一种新的全局优化搜索算法,以其简单通用、鲁棒性强、适于并行处理及应用范围广等显著特点,奠定了它作为21世纪关键智能计算之一的地位 第 4 章 基于遗
2、传算法的随机优化搜索 遗传算法的基本原理v遗传算法的基本思想正是基于模仿生物界遗传学的遗传过程它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体这个群体在问题特定的环境里生存竞争,适者有最好的机会生存和产生后代后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程第 4 章 基于遗传算法的随机优化搜索 v群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解值得注意的一点是,现在的遗传算法是受生物进化论学说的启发提出的,这种学说对我们用计算机解决复杂问题很有用,而它
3、本身是否完全正确并不重要(目前生物界对此学说尚有争议)第 4 章 基于遗传算法的随机优化搜索 序号序号遗传学概念遗传学概念遗传算法概念遗传算法概念数学概念数学概念1个体要处理的基本对象、结构也就是可行解2群体个体的集合被选定的一组可行解3染色体个体的表现形式可行解的编码4基因染色体中的元素编码中的元素5基因位某一基因在染色体中的位置元素在编码中的位置6适应值个体对于环境的适应程度,或在环境压力下的生存能力可行解所对应的适应函数值7种群被选定的一组染色体或个体根据入选概率定出的一组可行解8选择从群体中选择优胜的个体,淘汰劣质个体的操作保留或复制适应值大的可行解,去掉小的可行解9交叉一组染色体上对
4、应基因段的交换根据交叉原则产生的一组新解10交叉概率染色体对应基因段交换的概率(可能性大小)闭区间0,1上的一个值,一般为0.650.9011变异染色体水平上基因变化编码的某些元素被改变12变异概率染色体上基因变化的概率(可能性大小)开区间(0,1)内的一个值, 一般为0.0010.0113进化、适者生存个体进行优胜劣汰的进化,一代又一代地优化目标函数取到最大值,最优的可行解 4.1 基本概念 1. 1. 个体与种群个体与种群 个体就是模拟生物个体而对问题中的对象 (一般就是问题的解)的一种称呼,一个个 体也就是搜索空间中的一个点。 种群(population)就是模拟生物种群而由若 干个体组
5、成的群体, 它一般是整个搜索空间 的一个很小的子集。 2. 2. 适应度与适应度函数适应度与适应度函数 适应度(fitness)就是借鉴生物个体对环境的 适应程度,而对问题中的个体对象所设计的 表征其优劣的一种测度。 适应度函数(fitness function)就是问题中的 全体个体与其适应度之间的一个对应关系。 它一般是一个实值函数。该函数就是遗传算 法中指导搜索的评价函数。 3. 3. 染色体与基因染色体与基因染色体(chromosome)就是问题中个体的某种字符串形式的编码表示。字符串中的字符也就称为基因(gene)。 例如: 个体 染色体 9 - 1001 (2,5,6)- 010
6、101 1104. 4. 遗传操作遗传操作亦称遗传算子(genetic operator),就是关于染色体的运算。遗传算法中有三种遗传操作: 选择-复制(selection-reproduction) 交叉(crossover,亦称交换、交配或杂交) 变异(mutation,亦称突变) 选择-复制通常做法是:对于一个规模为N的种群S,按每个染色体xiS的选择概率P(xi)所决定的选中机会, 分N次从S中随机选定N个染色体, 并进行复制。 NjjiixfxfxP1)()()( 这里的选择概率P(xi)的计算公式为交叉 就是互换两个染色体某些位上的基因。 s1=01000101, s2=10011
7、011可以看做是原染色体s1和s2的子代染色体。 例如, 设染色体 s1=01001011, s2=10010101, 交换其后4位基因, 即 变异变异 就是改变染色体某个(些)位上的基因。 例如, 设染色体 s=11001101将其第三位上的0变为1, 即 s=11001101 11101101= s。 s也可以看做是原染色体s的子代染色体。4.2 基本遗传算法 遗传算法基本流程框图生成初始种群计算适应度选择-复制交叉变异生成新一代种群终止 ?结束 算法中的一些控制参数: 种群规模种群规模 最大换代数最大换代数 交叉率交叉率(crossover rate)就是参加交叉运算的染色体个数占全体染
8、色体总数的比例,记为Pc,取值范围一般为0.40.99。 变异率变异率(mutation rate)是指发生变异的基因位数所占全体染色体的基因总位数的比例,记为Pm,取值范围一般为0.00010.1。 基本遗传算法步1 在搜索空间U上定义一个适应度函数f(x),给定种群规模N,交叉率Pc和变异率Pm,代数T; 步2 随机产生U中的N个个体s1, s2, , sN,组成初始种群S=s1, s2, , sN,置代数计数器t=1; 步3 计算S中每个个体的适应度f() ;步4 若终止条件满足,则取S中适应度最大的个体作为所求结果,算法结束。 步5 按选择概率P(xi)所决定的选中机会,每次从S中随机
9、选定1个个体并将其染色体复制,共做N次,然后将复制所得的N个染色体组成群体S1; 步6 按交叉率Pc所决定的参加交叉的染色体数c,从S1中随机确定c个染色体,配对进行交叉操作,并用产生的新染色体代替原染色体,得群体S2; 步7 按变异率Pm所决定的变异次数m,从S2中随机确定m个染色体,分别进行变异操作,并用产生的新染色体代替原染色体,得群体S3;步8 将群体S3作为新一代种群,即用S3代替S,t = t+1,转步3; 4.3 遗传算法应用举例 例例4.1 利用遗传算法求解区间0,31上的二次函数y=x2的最大值。y=x2 31 XY 分析 原问题可转化为在区间0, 31中搜索能使y取最大值的
10、点a的问题。那么,0, 31 中的点x就是个体, 函数值f(x)恰好就可以作为x的适应度,区间0, 31就是一个(解)空间 。这样, 只要能给出个体x的适当染色体编码, 该问题就可以用遗传算法来解决。解(1) 设定种群规模,编码染色体,产生初始种群。 将种群规模设定为4;用5位二进制数编码染色体;取下列个体组成初始种群S1: s1= 13 (01101), s2= 24 (11000) s3= 8 (01000), s4= 19 (10011) (2) 定义适应度函数, 取适应度函数:f (x)=x2 (3) 计算各代种群中的各个体的适应度, 并对其染色体进行遗传操作,直到适应度最高的个体(即
11、31(11111))出现为止。 首先计算种群S1中各个体 s1= 13(01101), s2= 24(11000) s3= 8(01000), s4= 19(10011)的适应度f (si) 。 容易求得 f (s1) = f(13) = 132 = 169 f (s2) = f(24) = 242 = 576 f (s3) = f(8) = 82 = 64 f (s4) = f(19) = 192 = 361再计算种群S1中各个体的选择概率。NjjiixfxfxP1)()()(选择概率的计算公式为 由此可求得 P(s1) = P(13) = 0.14 P(s2) = P(24) = 0.49
12、 P(s3) = P(8) = 0.06 P(s4) = P(19) = 0.31 赌轮选择示意s40.31s20.49s10.14s30.06 赌轮选择法在算法中赌轮选择法可用下面的子过程来模拟: 在0, 1区间内产生一个均匀分布的随机数r。 若rq1,则染色体x1被选中。 若qk-1rqk(2kN), 则染色体xk被选中。 其中的qi称为染色体xi (i=1, 2, , n)的积累概率积累概率, 其计算公式为 ijjixPq1)(选择-复制 设从区间0, 1中产生4个随机数如下: r1 = 0.450126, r2 = 0.110347 r3 = 0.572496, r4 = 0.9850
13、3 染色体 适应度选择概率积累概率选中次数s1=01101 169 0.14 0.14 1s2=11000 576 0.49 0.63 2s3=01000 64 0.06 0.69 0s4=10011 361 0.31 1.00 1于是,经复制得群体:s1 =11000(24), s2 =01101(13) s3 =11000(24), s4 =10011(19) 交叉 设交叉率pc=100%,即S1中的全体染色体都参加交叉运算。 设s1与s2配对,s3与s4配对。分别交换后两位基因,得新染色体: s1=11001(25), s2=01100(12) s3=11011(27), s4=1000
14、0(16)变异 设变异率pm=0.001。 这样,群体S1中共有 540.001=0.02位基因可以变异。 0.02位显然不足1位,所以本轮遗传操作不做变异。 于是,得到第二代种群S2: s1=11001(25), s2=01100(12) s3=11011(27), s4=10000(16) 第二代种群第二代种群S2中各染色体的情况中各染色体的情况 染色体 适应度选择概率积累概率 估计的选中次数s1=11001 625 0.36 0.36 1s2=01100 144 0.08 0.44 0s3=11011 729 0.41 0.85 2s4=10000 256 0.15 1.00 1 假设这
15、一轮选择-复制操作中,种群S2中的4个染色体都被选中个染色体都被选中,则得到群体: s1=11001(25), s2= 01100(12) s3=11011(27), s4= 10000(16) 做交叉运算,让s1与s2,s3与s4 分别交换后三位基因,得 s1 =11100(28), s2 = 01001(9) s3 =11000(24), s4 = 10011(19) 这一轮仍然不会发生变异。 于是,得第三代种群S3: s1=11100(28), s2=01001(9) s3=11000(24), s4=10011(19) 第三代种群第三代种群S3中各染色体的情况中各染色体的情况 染色体
展开阅读全文