人工智能(Nilson版-英文课件)-Chap13-命题演算.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《人工智能(Nilson版-英文课件)-Chap13-命题演算.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人工智能 Nilson 英文 课件 Chap13 命题演算
- 资源描述:
-
1、The Propositional CalculusChapter 13.2OutlinelUsing Constraints on Feature ValueslThe LanguagelRules of InferencelDefinition of ProoflSemanticslSoundness and CompletenesslThe PSAT ProblemlOther Important Topics3Using Constraints on Feature ValueslDescription and SimulationDescriptionlBinary-valued f
2、eatures on what is true about the world and what is not trueleasy to communicatelIn cases where the values of some features cannot be sensed directly, their values can be inferred from the values of other featuresSimulationlIconic representationlmore direct and more efficient4Using Constraints on Fe
3、ature ValueslMotivating ExampleConsider a robot that is able to lift a block, if that block is liftable and the robots battery power source is adequateIf both are satisfied, then when the robot tries to lift a block it is holding, its arm moves.lx1 (BAT_OK)lx2 (LIFTABLE)lx3 (MOVES)constraint in the
4、language of the propositional calculusBAT_OK LIFTABLE MOVES5Using Constraints on Feature ValueslLogic involvesA language (with a syntax)Inference ruleSemantics for associating elements of the language with elements of some subject matterlTwo logical languagespropositional calculusfirst-order predica
5、te calculus (FOPC)613.2 The LanguagelElementsAtomsltwo distinguished atoms T and F and the countably infinite set of those strings of characters that begin with a capital letter, for example, P, Q, R, , P1, P2, ON_A_B, and so on.Connectivesl, , , and , called “or”, “and”, “implies”, and “not”, respe
6、ctively.Syntax of well-formed formula (wff), also called sentenceslAny atom is a wff.lIf w1 and w2 are wffs, so are w1 w2, w1 w2, w1 w2, w1.lThere are no other wffs.713.2 The LanguagelLiteralatoms and a sign in front of themlAntecedent (前项)and Consequent (后项)In w1 w2, w1 is called the antecedent of
7、the implication.w2 is called the consequent of the implication.lExtra-linguistic separators: ( , )group wffs into (sub) wffs according to the recursive definitions.813.3 Rule of InferencelWays by which additional wffs can be produced from other oneslCommonly used rulesmodus ponens(演绎推理)演绎推理): wff w2
8、 can be inferred from the wff w1 and w1 w2 introduction: wff w1 w2 can be inferred from the two wffs w1 and w2commutativity : wff w2 w1 can be inferred from the wff w1 w2 elimination: wff w1 can be inferred from the w1 w2 introduction: wff w1 w2 can be inferred from either from the single wff w1 or
9、from the single wff w2 elimination: wff w1 can be inferred from the wff ( w1 ).913.4 Definitions of Proof(验证定义)lProofThe sequence of wffs w1, w2, , wn is called a proof of wn from a set of wffs iff each wi is either in or can be inferred from a wff earlier in the sequence by using one of the rules o
10、f inference.lTheoremIf there is a proof of wn from , wn is a theorem of the set .l wnDenote the set of inference rules by the letter R.lwn can be proved from l R wn10ExamplelGiven a set, , of wffs: P, R, P Q, P, P Q, Q, R, Q R is a proof of Q R.lThe concept of proof can be based on a partial order.1
11、113.5 Semantics(语义)lSemanticsHas to do with associating elements of a logical language with elements of a domain of discourse.MeaninglSuch associationlInterpretationAn association of atoms with propositionsDenotation(指称)lIn a given interpretation, the proposition associated with an atom1213.5 Semant
12、icslUnder a given interpretation, atoms have values True or False.lSpecial AtomT : always has value TrueF : always has value FalselAn interpretation by assigning values directly to the atoms in a language can be specified13Propositional Truth Table lGiven the values of atoms under some interpretatio
13、n, use a truth table to compute a value for any wff under that same interpretation.lLet w1 and w2 be wffs.(w1 w2) has True if both w1 and w2 have value True.(w1 w2) has True if one or both w1 or w2 have value True. w1 has value True if w1 has value False.The semantics of is defined in terms of and .
展开阅读全文