2015年宁波大学博士专业课考试试题3807数字通信B.pdf
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2015年宁波大学博士专业课考试试题3807数字通信B.pdf》由用户(雁南飞1234)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 考研考博专业课试题
- 资源描述:
-
1、宁波大学宁波大学 2015 年攻读年攻读博博士学位研究生士学位研究生 入入 学学 考考 试试 试试 题题(B 卷卷) (答案必须写在答题纸上) 考试科目考试科目: 数字通信数字通信 科目代码:科目代码: 3807 适用专业适用专业: 通信与信息系统通信与信息系统/信号与信息处理信号与信息处理/移动计算与人机交互移动计算与人机交互/微纳信息系统微纳信息系统 第 1 页 共 4 页 一、填空(16 分) 1、QAM 信号的解调通常采用( )相干解调。 2、设在s125内传输 256 个二进制码元,则码元传输速率是( )。 3、如果理想 MPSK 数字调制传输系统的带宽为 10kHz,则该系统无码间
2、干扰最大信息传输速率为( )b/s。 4、数字通信系统的有效性指标有( )和( ),可靠性指标有( )。 5、数字通信的任务是( )、( )地传递信息。 二、选择题(14 分) 从下面所列答案中选择出最合理的答案,填入后面的答题中。每个空格只能选一个答案,不排除某一个答案被多次选择的可能性。 示例题:3+2= ( p ), 2 0= ( k ) (a) 2DPSK (b) 2ASK (c) 2PSK (d) 2FSK (e) 慢 (f)快 (g) 倒现象 (h) 相位错移 (i) kb/slog2M (j) kb/slog102M (k) 0 (l) 2 (m) 时域均衡 (n) 循环稳定 (
3、o) 高 (p)5 1、BPSK 信号在接收端因为载波同步系统中的分频,可能产生载波相位状态转移,发生对信号的错误解调,这种现象称为( )。 2、对于传输信道所引入的码间干扰,一种基本的解决方法是采用( )。 3、如果升余弦滚降系统的滚降系数越小,则相应的系统总的冲激响应 x (t)的拖尾衰减越( )。 4、2DPSK,2ASK,2PSK,2FSK,采用相干解调时,抗信道加性高斯白噪声性能从好到坏排列顺序是( ),( ),( ),( )。 宁波大学宁波大学 2015 年攻读年攻读博博士学位研究生士学位研究生 入入 学学 考考 试试 试试 题题(B 卷卷) (答案必须写在答题纸上) 考试科目考试
4、科目: 数字通信数字通信 科目代码:科目代码: 3807 适用专业适用专业: 通信与信息系统通信与信息系统/信号与信息处理信号与信息处理/移动计算与人机交互移动计算与人机交互/微纳信息系统微纳信息系统 第 2 页 共 4 页 三、计算题(10 分) (1)设某个数字通信传输系统的二进制独立等概率信号的码元宽度为 0.5ms,求该数字通信传输系统的码元速率BR和信息速率bR; (2)如果将该数字通信传输系统改为传送四进制信号,假设其码元带宽不变,则此时该数字通信传输系统的码元速率BR和信息速率bR是多少? 四、Translate the following from English into C
5、hinese. And,say something about your understanding of digital communications, communication system, or information system. (60 分) Orthogonal frequency division multiplexing (OFDM) has become a popular technique for transmission of signals over wireless channels. OFDM has been adopted in several wire
6、less standards such as digital audio broadcasting (DAB), digital video broadcasting (DVB-T), the IEEE 802.11a local area network (LAN) standard and the IEEE 802.16a metropolitan area network (MAN) standard. OFDM is also being pursued for dedicated short-range communications (DSRC) for road side to v
7、ehicle communications and as a potential candidate for fourth-generation (4G) mobile wireless systems. OFDM converts a frequency-selective channel into a parallel collection of frequency flat subchannels. The subcarriers have the minimum frequency separation required to maintain orthogonality of the
8、ir corresponding time domain waveforms, yet the signal spectra corresponding to the different subcarriers overlap in frequency. Hence, the available bandwidth is used very efficiently. If knowledge of the channel is available at the transmitter, then the OFDM transmitter can adapt its signaling stra
9、tegy to match the channel. Due to the fact that OFDM uses a large collection of narrowly spaced subchannels, these adaptive strategies can approach the ideal water pouring capacity of a frequency selective channel. OFDM is a block modulation scheme where a block of information symbols is transmitted
10、 in parallel on subcarriers. The time duration of an OFDM symbol is times larger than that of a single carrier system. An OFDM modulator can be implemented as an inverse discrete Fourier transform (IDFT) on a block of information symbols followed by an analog-to-digital converter (ADC). To mitigate
11、the effects of inter-symbol interference (ISI) caused by channel time spread, each block of IDFT coefficients is typically preceded by a cyclic prefix (CP) or a guard interval consisting of samples, such that the length of the CP is at least equal to the channel length. Under this condition, a linea
12、r convolution of the transmitted sequence and the channel is converted to a circular convolution. As a result, the effects of the ISI are easily and completely eliminated. Moreover, the approach enables the receiver to use fast signal processing transforms such as a fast Fourier transform (FFT) for
13、OFDM implementation. Similar techniques can be employed in single-carrier systems as well, by preceding each transmitted data block of length by a CP of length , while using frequency domain equalization at the receiver. While the first mobile communications standards focused primarily on voice comm
14、unication, the 宁波大学宁波大学 2015 年攻读年攻读博博士学位研究生士学位研究生 入入 学学 考考 试试 试试 题题(B 卷卷) (答案必须写在答题纸上) 考试科目考试科目: 数字通信数字通信 科目代码:科目代码: 3807 适用专业适用专业: 通信与信息系统通信与信息系统/信号与信息处理信号与信息处理/移动计算与人机交互移动计算与人机交互/微纳信息系统微纳信息系统 第 3 页 共 4 页 emphasis now has returned to the provision of systems optimized for data. This trend began wit
15、h the 3rd Generation Wideband Code Division Multiple Access (WCDMA) system designed in the 3GPP, and is now reaching fulfilment in its successor, known as the Long-Term Evolution (LTE). LTE is the first cellular communication system optimized from the outset to support packet-switched data services,
16、 within which packetized voice communications are just one part. LTE is an enabler. It is not technology for technologys sake, but technology with a purpose, connecting people and information to enable greater things to be achieved. It will provide higher data rates than ever previously achieved in
17、mobile communications, combined with wide-area coverage and seamless support for mobility without regard for the type of data being transmitted. The fourth generation (4G) of wireless cellular systems has been a topic under discussion for a long time, probably since the formal definition of third ge
18、neration (3G) cellular systems was completed by the International Telecommunications Union (ITU) in 1997. Upon completing the development of the 3G family of standards, the Third Generation Partnership Project (3GPP) started working on Long Term Evolution (LTE) systems during the Release 8 (Rel-8) o
19、f the standards. Being the first cellular system based on Orthogonal Frequency Division Multiple Access (OFDMA), it represented a major breakthrough in terms of achieving peak data rates of 300 Mbps in the downlink. However, both LTE Rel-8 and Rel-9 specifications did not meet the IMT-Advanced requi
展开阅读全文