书签 分享 收藏 举报 版权申诉 / 16
上传文档赚钱

类型导数在实际生活中的应用ppt课件.ppt

  • 上传人(卖家):三亚风情
  • 文档编号:2785629
  • 上传时间:2022-05-26
  • 格式:PPT
  • 页数:16
  • 大小:535KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《导数在实际生活中的应用ppt课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    导数 实际 生活 中的 应用 ppt 课件
    资源描述:

    1、1新课引入新课引入 导数在实际生活中有着广泛的应导数在实际生活中有着广泛的应用用, ,利用导数求最值的方法利用导数求最值的方法, ,可以求出可以求出实际生活中的某些最值问题实际生活中的某些最值问题. .1. .几何方面的应用几何方面的应用. .2. .物理方面的应用物理方面的应用. .3. .经济学方面的应用经济学方面的应用. .(面积和体积等的最值)(面积和体积等的最值)(利润方面最值)(利润方面最值)(功和功率等最值)(功和功率等最值)2例例1在边长为在边长为60 cm的正方形铁片的四角切去的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如相等的正方形,再把它的边沿虚线折起(如图

    2、),做成一个无盖的方底箱子,箱底的边长图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少?是多少时,箱底的容积最大?最大容积是多少?xx6060 xx3解解:设箱底边长为设箱底边长为x cm, 箱子容积为箱子容积为Vx2 h则箱高则箱高602xh23602xxV =60 x3x/2令令V 0,得,得x40,x0 (舍去舍去)得得V (40)16000答:当答:当箱底边长为箱底边长为x40时,时,箱子容积最大,箱子容积最大,最大值为最大值为16000cm3060 x ()当当x(0(0,40)40)时时V (x)0;当当x(40(40,60)60)时时V (x)0;

    3、V (40)(40)为极大值,且为最大值为极大值,且为最大值4例例2圆柱形金属饮料罐的容积一定时,它的高与圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才能使所用的材料最省?底与半径应怎样选取,才能使所用的材料最省?hR5解解:设桶底面半径为设桶底面半径为R,2VhR则桶高为222( )2222,VS RRRRVRR桶的用料为22( )4,VS RRR22( )40,VS RRR令2VR 解得2232VVhRV此时,Rh2即因为因为S(R)只有一个极值只有一个极值,所以它是最小值所以它是最小值答:当罐高与底的直径相等时,所用材料最省答:当罐高与底的直径相等时,所用材料最省3422V

    4、V336变式:当圆柱形金属饮料罐的表面积为定值变式:当圆柱形金属饮料罐的表面积为定值 S 时时, ,它的高与底面半径应怎样选取,它的高与底面半径应怎样选取, 才能使所用材料最省?才能使所用材料最省?提示:提示:S2Rh2R2 h222SRRV(R) R2(S2R2)R SRR3222SRR1212V (R)0 S6R2 6R2 2Rh2R2 h2R7例例3 在如图所示的电路中,已知电源的内阻为在如图所示的电路中,已知电源的内阻为r,电,电动势为动势为E,外电阻,外电阻R为多大时,才能使电功率最大?最为多大时,才能使电功率最大?最大电功率是多少?大电功率是多少?R8解:电功率电功率PI2R,其中

    5、,其中I为电流强度,则为电流强度,则 PE/ /(Rr)2R由由P 0,解得:,解得:Rr列表分析列表分析,当当Rr时,时,P取得极大值,且是最大值最大值为取得极大值,且是最大值最大值为P 答:当外电阻答:当外电阻R等于内电阻等于内电阻r时,电功率最大,最大时,电功率最大,最大电功率是电功率是 2222243()()() ()()()E RRrE R RrE rRPRrRrERr22()E RRr24Er24Er9例例4 4 强度分别为强度分别为a,b的两个点光源的两个点光源A,B,它们间,它们间的距离为的距离为d,试问在连接这两个光源的线段,试问在连接这两个光源的线段AB上,上,何处照度最小

    6、?试就何处照度最小?试就a8,b1,d3时回答上述时回答上述问题(照度与光的强度成正比,与光源距离的平方问题(照度与光的强度成正比,与光源距离的平方成反比成反比ABPX3X1011 23333182612162033k xxxkkIxxxxx由解得解得x2,故当,故当0 x2时,时,I (x)0;当;当2x3时,时, I (x)0因此,因此,x2时,时,I取得极小值,且是最小值取得极小值,且是最小值答:在连结两光源的线段答:在连结两光源的线段AB上,距光源上,距光源A为为2处的照度最小处的照度最小12例例5 5 在经济学中,生产在经济学中,生产x单位产品的成本称为成单位产品的成本称为成本函数,

    7、记为本函数,记为C(x);出售;出售x单位产品的收益称为收单位产品的收益称为收益函数,记为益函数,记为R(x); R(x)C(x)称为利润函数,称为利润函数,记为记为P(x).(1 1)设)设C(x)106x30.003x25x1000,生产多,生产多少单位产品时,边际成本少单位产品时,边际成本C (x)最低最低? ?(2 2)设)设C(x)50 x10000,产品的单价,产品的单价p1000.01x,怎样定价可使利润最大?怎样定价可使利润最大?13解解:(:(1)c (x)3106x20.006x5g(x), g (x) 6106x0.0060, 解得:解得:x1000,而,而g(x)在在x

    8、0上仅有一个极小上仅有一个极小值,故值,故x1000时边际成本最低时边际成本最低(2)P(x) R(x) C(x) x(1000.01x)(50 x10000) 0.01x250 x 10000 , x2500,而,而P(x)最大,此时最大,此时P1002575答:生产答:生产1000个单位产品时,边际成本最低;当生产个单位产品时,边际成本最低;当生产的单价为的单价为75时,利润最大时,利润最大14四、课堂练习四、课堂练习1将正数将正数a分成两部分,使其立方和为最小,这两部分应分成分成两部分,使其立方和为最小,这两部分应分成_和和_2在半径为在半径为R的圆内,作内接等腰三角形,当底边上高为的圆

    9、内,作内接等腰三角形,当底边上高为_时,它的面积最大时,它的面积最大3有一边长分别为有一边长分别为8与与5的长方形,在各角剪去相同的小正方形,的长方形,在各角剪去相同的小正方形,把四边折起作成一个无盖小盒,要使纸盒的容积最大,问剪去把四边折起作成一个无盖小盒,要使纸盒的容积最大,问剪去的小正方形边长应为多少?的小正方形边长应为多少?4一条水渠,断面为等腰梯形,如图所示,在确定断面尺寸时,一条水渠,断面为等腰梯形,如图所示,在确定断面尺寸时,希望在断面希望在断面ABCD的面积为定值的面积为定值S时,使得湿周时,使得湿周lAB+BC+CD最小,这样可使水流阻力小,渗透少,求此时的高最小,这样可使水

    10、流阻力小,渗透少,求此时的高h和下底边长和下底边长b. 15五、回顾反思五、回顾反思(1)解有关函数最大值、最小值的实际问题,需要分析问题)解有关函数最大值、最小值的实际问题,需要分析问题中各个变量之间的关系,找出适当的函数关系式,并确定函中各个变量之间的关系,找出适当的函数关系式,并确定函数的定义区间;所得结果要符合问题的实际意义数的定义区间;所得结果要符合问题的实际意义(2)根据问题的实际意义来判断函数最值时,如果函数在此)根据问题的实际意义来判断函数最值时,如果函数在此区间上只有一个极值点,那么这个极值就是所求最值,不必区间上只有一个极值点,那么这个极值就是所求最值,不必再与端点值比较再与端点值比较(3)相当多有关最值的实际问题用导数方法解决较简单)相当多有关最值的实际问题用导数方法解决较简单 16

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:导数在实际生活中的应用ppt课件.ppt
    链接地址:https://www.163wenku.com/p-2785629.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库