命题逻辑ppt课件102页PPT.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《命题逻辑ppt课件102页PPT.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 命题逻辑 ppt 课件 102
- 资源描述:
-
1、命题逻辑命题逻辑ppt课件课件2 命题逻辑3第第2章章 命题逻辑命题逻辑 2.1 命题及其表示命题及其表示2.2 命题公式命题公式2.3 命题公式间的关系命题公式间的关系2.4 主范式与判定定理主范式与判定定理2.5 命题逻辑的推理理论命题逻辑的推理理论42.1 命题及其表示命题及其表示 n命题与真值命题与真值n原子命题原子命题n复合命题复合命题n命题常项命题常项n命题变项命题变项n联结词联结词 5命题与真值命题与真值 命题命题: 能判断真假的陈述句。这种陈述句的判断只有两种可能:一种是能判断真假的陈述句。这种陈述句的判断只有两种可能:一种是 正确的判断,一种是错误的判断。称判断为正确的命题的
2、真值(或正确的判断,一种是错误的判断。称判断为正确的命题的真值(或 值)为真,称判断为错误的命题的真值(或值)为假。值)为真,称判断为错误的命题的真值(或值)为假。 因此又可称因此又可称命题是具有唯一真值的陈述句命题是具有唯一真值的陈述句或或判断结果惟一的陈述句判断结果惟一的陈述句 命题的真值命题的真值: 判断的结果判断的结果真值的取值真值的取值: 真与假真与假 二者取一二者取一真命题真命题: 真值为真的命题真值为真的命题假命题假命题: 真值为假的命题真值为假的命题注意注意: 感叹句、祈使句、疑问句都不是命题感叹句、祈使句、疑问句都不是命题陈述句中的悖论以及判断结果不惟一确定的也不是命题陈述句
3、中的悖论以及判断结果不惟一确定的也不是命题 6 例例 下列句子中那些是命题?下列句子中那些是命题? (1) 是无理数是无理数. (2) 2 + 5 8. (3) x + 5 3. (4) 你有铅笔吗?你有铅笔吗? (5) 这只兔子跑得真快呀!这只兔子跑得真快呀! (6) 请不要讲话!请不要讲话! (7) 我正在说谎话我正在说谎话.真命题真命题假命题假命题真值不确定真值不确定疑问句疑问句感叹句感叹句祈使句祈使句悖论悖论(3)(7)都不是命题都不是命题 27理发师悖论理发师悖论 n某乡村有一位理发师,一天他宣布:某乡村有一位理发师,一天他宣布:只给不自己只给不自己理发的人理发理发的人理发。这里就产
4、生了问题:理发师给不。这里就产生了问题:理发师给不给自己理发?给自己理发?n如果他给自己理发,他就是自己理发的人,按照如果他给自己理发,他就是自己理发的人,按照他的原则,他不能给自己理发;他的原则,他不能给自己理发;n如果他不给自己理发,他就是不自己理发的人,如果他不给自己理发,他就是不自己理发的人,按照他的原则,他就应该给自己理发。按照他的原则,他就应该给自己理发。n这就产生了矛盾。这就产生了矛盾。 8命题的分类命题的分类 简单命题简单命题( (原子命题原子命题) ): 简单陈述句构成的命题简单陈述句构成的命题 复合命题复合命题: 由简单命题用联结词联结而成的命题由简单命题用联结词联结而成的
5、命题 9简单命题符号化简单命题符号化 2在本书中用小写英文字母在本书中用小写英文字母 p, q, r, , ,pi, ,qi, ,ri (i1)表示简单命题,将)表示简单命题,将表示命题的符号放在该命题的前面,称为命题符号化。表示命题的符号放在该命题的前面,称为命题符号化。 用用“1”表示真,用表示真,用“0”表示假表示假对简单命题而言,它的真值是确定的,因而又称为命题常项或命题常元。对简单命题而言,它的真值是确定的,因而又称为命题常项或命题常元。例如,令例如,令 p: 是有理数,则是有理数,则 p 的真值为的真值为 0 q:2 + 5 = 7,则,则 q 的真值为的真值为 1 见课本例见课本
6、例1.210联结词与复合命题联结词与复合命题 1.否定式与否定联结词否定式与否定联结词“ ” 定义定义2.12.1 设设p为任一命题,复合命题为任一命题,复合命题 “ “非非p”(或(或 “ “p的的否定否定”)称为)称为p的的否定式否定式,记作,记作 p,符号,符号 称作称作否定联否定联结词结词,并规定,并规定 p 为真当且仅当(即:等价)为真当且仅当(即:等价)p为假为假2.合取式与合取联结词合取式与合取联结词“” 定义定义 2.22.2设设p, ,q为两命题为两命题, ,复合命题复合命题“p并且并且q”(”(或或“p与与q”)”)称称 为为p与与q的的合取式合取式,记作,记作pq,称作称
7、作合取联结词合取联结词,并规,并规 定定 pq为真当且仅当为真当且仅当p与与q同时为真同时为真注意:描述合取式的灵活性与多样性注意:描述合取式的灵活性与多样性 分清简单命题与复合命题分清简单命题与复合命题 11 例例 将下列命题符号化将下列命题符号化. (1) 王晓既用功又聪明王晓既用功又聪明. (2) 王晓不仅聪明,而且用功王晓不仅聪明,而且用功. (3) 王晓虽然聪明,但不用功王晓虽然聪明,但不用功. (4) 王晓不是不聪明,而是不用功王晓不是不聪明,而是不用功. (5) 张辉与王丽都是三好学生张辉与王丽都是三好学生. (6) 张辉与王丽是同学张辉与王丽是同学. 解解 令令 p:王晓用功,
8、:王晓用功,q:王晓聪明,则:王晓聪明,则 (1) pq (2) pq (3) p q.12 例例 (续续) (4) ( p) q.令令 r : 张辉是三好学生,张辉是三好学生,s :王丽是三好学生王丽是三好学生 (5) rs. (6) 令令 t : 张辉与王丽是同学,张辉与王丽是同学,t 是简单命题是简单命题 .说明说明: (1)(4)说明描述合取式的灵活性与多样性说明描述合取式的灵活性与多样性. (5) 中中“与与”联结的是句子的主语成分,因而联结的是句子的主语成分,因而(5)中句子是简单命题中句子是简单命题.13联结词与复合命题联结词与复合命题( (续续) ) 定义2.32.3 设 p,
9、q为二命题,复合命题“p或q”称作p与q的析取式,记作pq,称作析取联结词,并规定 pq为假当且仅当p与q同时为假. 即:pq为真当且仅当p与q至少有一个为真。此处定义的析取式pq表示的是一种相容性或,即允许p与q同时为真注意区分自然言语中“或”的二义性。见课本描述。例例 将下列命题符号化将下列命题符号化 (1) 2或或4是素数是素数. (2) 2或或3是素数是素数. (3) 4或或6是素数是素数. (4) 小元元只能拿一个苹果或一个梨小元元只能拿一个苹果或一个梨. (5) 王晓红生于王晓红生于1975年或年或1976年年. 3.析取式与析取联结词析取式与析取联结词“”14解解 令令 p:2是
10、素数是素数, q:3是素数是素数, r:4是素数是素数, s:6是素数是素数, , 则则 (1), (2), (3) 均为相容或均为相容或. . 分别符号化为分别符号化为: : pr , pq, rs, 它们的真值分别为它们的真值分别为 1, 1, 0. 而而 (4), (5) 为排斥或为排斥或. 令令 t :小元元拿一个苹果,小元元拿一个苹果,u:小元元拿一个梨,小元元拿一个梨, 则则 (4) 符号化为符号化为 (t u) ( tu). 令令v :王晓红生于王晓红生于1975年年, ,w: :王晓红生于王晓红生于1976年年, ,则则 (5) 既可符号化为既可符号化为 (v w)( vw),
11、 又可又可符号化为符号化为 vw , 为什么为什么? (看(看vw 的值是多少?的值是多少?)15联结词与复合命题联结词与复合命题( (续续) ) 定义定义2.42.4 设设 p,q为二命题,复合命题为二命题,复合命题 “如果如果p,则则q” 称作称作p与与q的的蕴涵式蕴涵式,记作,记作pq,并称,并称p是蕴涵式是蕴涵式的的前件前件,q为蕴涵式的为蕴涵式的后件后件. 称作称作蕴涵联结词蕴涵联结词,并规定,并规定,pq为假当且仅当为假当且仅当 p 为真为真 q 为假为假.4.蕴涵式与蕴涵联结词蕴涵式与蕴涵联结词“”16pq 的逻辑关系:的逻辑关系:q为为p的必要条件的必要条件 或或p p为为q
12、q的充分条件的充分条件 (找(找关系时,要分清蕴涵式的关系时,要分清蕴涵式的前件前件与与后件,后件, 即找准充分条件或必要条件)即找准充分条件或必要条件)“如果如果 p,则,则 q ” 的不同表述法很多:的不同表述法很多: 若若 p,就,就 q( p是是q的充分条件的充分条件 ) 只要只要 p,就,就 q ( p是是q的充分条件的充分条件 ) p 仅当仅当 q ( q是是p的必要条件的必要条件 ) 只有只有 q 才才 p ( q是是p的必要条件的必要条件 ) 除非除非 q, 才才 p 或或 除非除非 q, 否则非否则非 p,( (必须记住必须记住) )否则非否则非 可以理解为可以理解为 才才当
13、当 p 为假时,为假时,pq 为真为真常出现的错误:不分充分与必要条件常出现的错误:不分充分与必要条件见课本中注意的两点事项见课本中注意的两点事项联结词与复合命题联结词与复合命题( (续续) )17 例例 设设 p p: :天冷,天冷,q q: :小王穿羽绒服,小王穿羽绒服, 将下列命题符号化将下列命题符号化 (1) 只要天冷,小王就穿羽绒服只要天冷,小王就穿羽绒服. (2) 因为天冷,所以小王穿羽绒服因为天冷,所以小王穿羽绒服. (3) 若小王不穿羽绒服,则天不冷若小王不穿羽绒服,则天不冷. (4) 只有天冷,小王才穿羽绒服只有天冷,小王才穿羽绒服. (5) 除非天冷,小王才穿羽绒服除非天冷
14、,小王才穿羽绒服. (6) 除非小王穿羽绒服,否则天不冷除非小王穿羽绒服,否则天不冷. (7) 如果天不冷,则小王不穿羽绒服如果天不冷,则小王不穿羽绒服. (8) 小王穿羽绒服仅当天冷的时候小王穿羽绒服仅当天冷的时候.注意:注意: pq 与与 q p 等值(真值相同)等值(真值相同) pqpqpqpqqp qpqpqp18联结词与复合命题联结词与复合命题( (续续) )定义定义2.52.5 设设p,q为二命题,复合命题为二命题,复合命题 “p当且仅当当且仅当q”称作称作p与与q的的等价式等价式,记作,记作pq,称作称作等价联结等价联结词词. pq为真当且仅当为真当且仅当p与与q同时为真或同时为
15、假同时为真或同时为假.说明说明: (1) pq 的逻辑关系的逻辑关系:p与与q互为充分必要条件互为充分必要条件 (2) pq为真当且仅当为真当且仅当p与与q同真或同假同真或同假5.等价式与等价联结词等价式与等价联结词“”19例例 求下列复合命题的真值求下列复合命题的真值 (1) 2 + 2 4 当且仅当当且仅当 3 + 3 6. (2) 2 + 2 4 当且仅当当且仅当 3 是偶数是偶数. (3) 2 + 2 4 当且仅当当且仅当 太阳从东方升起太阳从东方升起. (4) 2 + 2 4 当且仅当当且仅当 美国位于非洲美国位于非洲. (5) 函数函数 f (x) 在在x0 可导的充要条件是它在可
16、导的充要条件是它在 x0连续连续. 它们的真值分别为它们的真值分别为 1,0,1,0,0.20用联结词把各种各样的复合命题符号化用联结词把各种各样的复合命题符号化基本步骤:基本步骤:1:分析出各简单命题,将它们符号化;:分析出各简单命题,将它们符号化;2:使用合适的联结词,把简单命题逐个联:使用合适的联结词,把简单命题逐个联结起来,组成复合命题的符号化表示。结起来,组成复合命题的符号化表示。注意析取联结词注意析取联结词的应用的应用21联结词与复合命题联结词与复合命题( (续续) )以上给出了以上给出了5个联结词:个联结词: , , , , ,组成,组成一个联结词集合一个联结词集合 , , ,
17、, , 联结词的优先顺序为:联结词的优先顺序为: , , , , ; 1:1:如果出现的联结词同级,又无括号时,则按如果出现的联结词同级,又无括号时,则按从左到右的顺序运算从左到右的顺序运算; 2:2:若遇有括号时,应该先进行括号中的运算若遇有括号时,应该先进行括号中的运算. 注意注意: : 本书中使用的本书中使用的 括号全为圆括号()括号全为圆括号(). 222.2 命题公式命题公式命题变项与合式公式命题变项与合式公式公式的赋值公式的赋值真值表真值表命题的分类命题的分类 重言式重言式 矛盾式矛盾式 可满足式可满足式23命题变项与合式公式命题变项与合式公式 命题常项命题常项:简单命题:简单命题
18、 原子命题原子命题命题变项命题变项:真值不确定的陈述句:真值不确定的陈述句定义定义2.6 合式公式合式公式 (命题公式命题公式, 公式公式) 递归定义如下:递归定义如下:(1) 单个命题常项或变项单个命题常项或变项 p,q,r,pi ,qi ,ri ,0,1 是是合式公式;合式公式;(2) 若若A是合式公式,则是合式公式,则 ( A)也是合式公式;也是合式公式;(3) 若若A, B是合式公式,则是合式公式,则(A B), (A B), (AB), (AB)也是合式公式;也是合式公式;(4) 只有有限次地应用只有有限次地应用(1)(3)形成的符号串才是合式公式。形成的符号串才是合式公式。注注:
19、外层括号可以省去外层括号可以省去 问:命题公式是命题吗?问:命题公式是命题吗?不是,原因为:命题公式中可能含有命题变项。不是,原因为:命题公式中可能含有命题变项。24合式公式的层次合式公式的层次 定义定义 2.72.7(1) 若公式若公式A是单个的命题是单个的命题(常项或变项)常项或变项), 则称则称A为为 0层公层公式式.(2) 称称A是是n+1(n0)层公式是指下面情况之一:层公式是指下面情况之一: (a) A= B, B是是n层公式;层公式; (b) A=B C, 其中其中B,C分别为分别为i层和层和j层公式,且层公式,且 n=max(i, j); (c) A=B C, 其中其中B,C的
20、层次及的层次及n同同(b); (d) A=BC, 其中其中B,C的层次及的层次及n同同(b); (e) A=BC, 其中其中B,C的层次及的层次及n同同(b). (3)若若A的最高层次为的最高层次为k.则则A是是k层公式。层公式。25合式公式的层次合式公式的层次 (续续) 例如例如 公式公式 p 0层层 p 1层层 pq 2层层 (pq)r 3层层 ( p q) r)( r s) 4层层26公式的赋值公式的赋值 定义定义2.8 给命题公式给命题公式A中的所有的命题变项中的所有的命题变项 p1, p2, , pn指定一组指定一组真值称为对真值称为对A的一个的一个赋值赋值或或 解释解释成真赋值成真
21、赋值: 使公式为真的赋值使公式为真的赋值成假赋值成假赋值: 使公式为假的赋值使公式为假的赋值说明说明: 赋值赋值 = 1 2 n之间不加标点符号,之间不加标点符号, i=0或或1. A中仅出现中仅出现 p1, p2, , pn,给,给A赋值赋值 1 2 n是是指指 p1= 1, p2= 2, , pn= n A中仅出现中仅出现 p, q, r, , 给给A赋值赋值 1 2 3是指是指p= 1,q= 2 , r= 3 含含n个变项的公式有个变项的公式有2n个赋值个赋值. 27真值表真值表 真值表真值表: 将命题将命题公式公式A在所有赋值之下取值的情况在所有赋值之下取值的情况列成表,成为列成表,成
22、为A的真值表的真值表 例例 给出公式的真值表给出公式的真值表 A= (qp) qp 的的真值表真值表 p q qp (qp) q (qp) qp 0 00 11 01 1 1011 0001 111128例例 B = ( p q) q 的的真值表真值表 p q p p q ( p q) ( p q) q0 00 11 01 1 1100110100100000实例实例29例例 C= (p q) r 的的真值表真值表 p q r p q r (p q)r 0 0 00 0 10 1 00 1 11 0 01 0 11 1 0 1 1 1 0011111 1 1010101 0 111010103
23、0公式的类型公式的类型 定义定义2.92.9 设设A为一个命题公式为一个命题公式 (1) 若若A在它的各种赋值下取值均为真,在它的各种赋值下取值均为真,则称则称A为为重言式重言式( (也也称称永真式永真式) ) (2) 若若A在它的各种赋值下取值均为假在它的各种赋值下取值均为假,则称,则称A为为矛盾式矛盾式( (也也称称永假式永假式) ) (3) 若若A至少存在一组赋值是成真赋值,则称至少存在一组赋值是成真赋值,则称A为为可满足式可满足式注意:重言式是可满足式,但反之不真注意:重言式是可满足式,但反之不真. .上例中上例中A为重言式,为重言式,B为矛盾式,为矛盾式,C为可满足式为可满足式 A=
24、 (qp) qp,B = ( p q) q,C= (p q)r31小结:小结:本节主要内容:本节主要内容:要理解所学的定义,利用所给的定义进行简单的判断和分析。要理解所学的定义,利用所给的定义进行简单的判断和分析。1:命题:命题 命题常项命题常项 命题变项命题变项 简单命题简单命题 复合命题的定义。复合命题的定义。2 2:联结词:联结词: , , , , 定义定义 取值情况,对应的语言词汇取值情况,对应的语言词汇表达。表达。3:命题公式:命题公式 层次层次 成真赋值成真赋值 成假赋值成假赋值 真值表的定义真值表的定义4:构造真值表的具体步骤,重言式:构造真值表的具体步骤,重言式 矛盾式矛盾式
25、可满足式可满足式 定定义义32上节知识复习上节知识复习n1:定义:命题定义:命题 真真(假假)命题命题 命题常命题常(变变)项项 n2:五个联结词定义及取值情况,对应的五个联结词定义及取值情况,对应的 语言表达语言表达n3:复合命题符号化的步骤复合命题符号化的步骤n4:命题公式命题公式 命题公式的层次定义及判断命题公式的层次定义及判断n5:成真赋值成真赋值 成假赋值成假赋值 重言式重言式 矛盾式矛盾式 可满足式定义可满足式定义n6:真值表定义及构造步骤真值表定义及构造步骤33随堂练习随堂练习1:写出命题、简单命题的定义。:写出命题、简单命题的定义。2:用符号定义五个联结词及其各自取值情况。:用
展开阅读全文