数学建模讲座PPT课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《数学建模讲座PPT课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 建模 讲座 PPT 课件
- 资源描述:
-
1、数学建模讲座玩具、照片 实物模型实物模型风洞中的飞机 物理模型物理模型地图、电路图 符号模型符号模型模型模型是为了一定目的,对客观事物的一部分进行简缩、抽象、提炼出来的原型的替代物。模型模型集中反映了原型中人们需要的那一部分特征。我们常见的模型什么是数学模型什么是数学模型第一章第一章 建立数学模型建立数学模型你碰到过的数学模型你碰到过的数学模型“航行问题航行问题” 甲乙两地相距750 公里,船从甲到乙顺水航行需30 小时,从乙到甲逆水航行需50 小时,问船的速度是多少。用x表示船速,y表示水速,列出方程:75050)(75030)(yxyx求解得到 x=20, y=5,答:船速每小时答:船速每
2、小时2020公里公里航行问题建立数学模型的基本步骤航行问题建立数学模型的基本步骤 作出简化假设(船速、水速为常数); 用符号表示有关量(x, y表示船速和水速); 用物理定律(匀速运动的距离等于速度乘以 时间)列出数学式子(二元一次方程); 求解得到数学解答(x=20, y=5); 回答原问题(船速每小时20公里)。数学模型 (Mathematical Model) 和数学建模(Mathematical Modeling)数学模型数学模型: :对于一个现实对象对象,为了一个特定目的目的,根据其内在规律规律,作出必要的简化假设假设,运用适当的数学工具数学工具,得到的一个数学结构数学结构。数学建模
3、:数学建模:建立数学模型的全过程全过程(包括建立、求解、分析、检验)。数数 学学 建建 模模 的的 重重 要要 意意 义义 电子计算机的出现及飞速发展 数学以空前的广度和深度向一切领域渗透数学建模作为用数学方法解决实际问题的第一步,越来越受到人们的重视。数学建模计算机技术如虎添翼如虎添翼知识经济建模示例 椅子能在不平的地面上放稳吗?问题椅子能在不平的地面上放稳吗?1.椅子四条腿一样长,椅脚与地面接触处可视为一人点,四脚的连线呈正方形;2.地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况),即地面可视为数学上的连续曲面;3.对于椅脚的间距和椅腿的长度而言,地面是相对平坦的,使
4、椅子的任何位置至少有三只脚同时着地。模型假设ABCDtABCDOx模型构成椅脚连线为正方形ABCD(如右图)。t 椅子绕中心点O旋转角度f(t)A,C两脚与地面距离之和g(t)A,C两脚与地面距离之和 f(t), g(t) 0模型构成由假设1,f和g都是连续函数由假设3,椅子在任何位置至少有三只脚同时着地:对任意t ,f(t)和g(t)中至少有一个为0。当t=0时,不妨设g(t)=0,f(t)0,原题归结为证明如下的数学命题:已知f(t)和g(t)是t的连续函数,对任意t, f(t) g(t)=0,且g(0)=0,f(0)0。则存在t0,使f(t0)= g(t0)=0模型求解OxABCDABC
5、Dt最后,因为f(t) g(t)=0,所以f(t0)= g(t0)=0。令h(t)= f(t)-g(t),则h(0)0和h( ) 0,由f和g的连续性知h也是连续函数。根据连续函数的基本性质,必存在t0 (0t00可知g( )0,f( )=022建模示例建模示例 商人们怎样安全过河商人们怎样安全过河问题(智力游戏) 3名商人 3名随从河小船(至多2人)随从们密约, 在河的任一岸, 一旦随从的人数比商人多, 就杀人越货.但是乘船渡河的方案由商人决定.商人们怎样才能安全过河?问题分析多步决策过程决策决策 每一步(此岸到彼岸或彼岸到此岸)船上的人员要求要求在安全的前提下(两岸的随从数不比商人多),经
6、有限步使全体人员过河模型构成xk第k次渡河前此岸的商人数yk第k次渡河前此岸的随从数xk, yk=0,1,2,3; k=1,2,sk=(xk , yk)过程的状态S=(x , y) x=0, y=0,1,2,3; x=3, y=0,1,2,3; x=y=1,2S 允许状态集合uk第k次渡船上的商人数vk第k次渡船上的随从数dk=(uk , vk)决策D=(u , v) u+v=1, 2 允许决策集合uk, vk=0,1,2; k=1,2,sk+1=sk dk +(-1)k状态转移律求求dk D(k=1,2, n), 使使sk S按按转移律转移律由由s1=(3,3)到达到达sn+1=(0,0).
7、多步决策问题模型求解xy3322110 穷举法 编程上机图图解解法法状态s=(x,y) 16个格点 10个 点允许决策D 移动1或2格; k奇,左下移; k偶,右上移.s1sn+1d1, d11给出安全渡河方案评注和思考规格化方法规格化方法, , 易于推广易于推广考虑考虑4名商人各带一随从的情况名商人各带一随从的情况d1d11允许状态SS=(x , y) x=0, y=0,1,2,3; x=3, y=0,1,2,3; x=y=1,2D=(u , v) u+v=1, 2 习题 模仿这一案例,作下面一题: 人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、
8、鸡要吃米。试设计一安全过河方案,并使渡河次数尽量地少。背景 年 1625 1830 1930 1960 1974 1987 1999人口(亿) 5 10 20 30 40 50 60世界人口增长概况中国人口增长概况 年 1908 1933 1953 1964 1982 1990 1995人口(亿) 3 4.7 6 7 10.1 11.3 12研究人口变化规律研究人口变化规律控制人口过快增长控制人口过快增长建模示例建模示例 如何预报人口的增长如何预报人口的增长指数增长模型常用的计算公式kkrxx)1 (0马尔萨斯(1788-1834)提出的指数增长模型(1798)x(t) 时刻t人口r 人口(相
展开阅读全文