支持向量机-ppt课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《支持向量机-ppt课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 支持 向量 ppt 课件
- 资源描述:
-
1、支持向量机分析与实例应用支持向量机分析与实例应用动态分析与测试期末汇报1ppt课件1.支持向量机概述2.线性支持向量机3.非线性支持向量机4.支持向量机核函数支持向量机分析与应用支持向量机分析与应用2ppt课件课件1.支持向量机概述 支持向量机(SVM,Support Vector Machines)是由Vapnik等人提出的一种基于统计学习理论的机器学习算法。其基本思想为:通过寻找两个最优的分类线,使其能够正确的划分两类数据,并保证分类间隔最大。现有的支持向量机可分为两种:一种是支持向量分类机(SVC,Support Vector Classification),主要用来解决分类问题;另一种
2、是支持向量回归机(SVR,Support Vector Regression)。3ppt课件课件1.支持向量机概述 支持向量机是基于统计学习理论一种具有严格数学理论基础和直观集合解释的新型机器学习方法,在处理不均匀性、离散性、稀少性等特点突出的测录井小样本数据学习问题上具有独到的优越性。相比其他算法在以下几个方面具有更大优势: 1.支持向量机结构简单,功能强大,运算之前不需要确定隐含层节点个数,可以根据实际问题的需要而自动调节规模。4ppt课件课件1.支持向量机概述 2.支持向量机模型适用于样本数量有限的情况,它所求得的结果是在现有信息下的最优解,而不是样本数据无穷大时的最优解,故支持向量机更
3、适合于数据有限的情况下进行聚类分析; 3.支持向量机模型最终所需解决问题转化成为二次型寻优的问题,故其避免了在神经网络中的局部极值问题,求得的将是全局最优点,同时解决了由于工程或地质因素造成的非正常数据对最终聚类结果的影响;5ppt课件课件1.支持向量机概述 4. 支持向量机模型通过非线性变换将样本数据转换到高维的特征空间,通过在高维空间中构造线性判别函数来非线性判别函数,它的这一特殊性使得支持向量机模型具有较好的推广能力,并且其算法复杂度与样本数据维数无关,从而同时巧妙地解决了维数问题。6ppt课件课件2.线性支持向量机 线性可分的情况: 假如说,我们令黑色的点 = -1, 白色的点 = +
4、1,直线f(x) = w.x + b,这儿的x、w是向量,其实写成这种形式也是等价的f(x) = w1x1 + w2x2 + wnxn + b, 当向量x的维度=2的时候,f(x) 表示二维空间中的一条直线, 当x的维度=3的时候,f(x) 表示3维空间中的一个平面,当x的维度=n 3的时候,表示n维空间中的n-1维超平面。7ppt课件课件2.线性支持向量机 我们令黑色白色两类的点分别为+1, -1,所以当有一个新的点x需要预测属于哪个分类的时候,我们用sgn(f(x),就可以预测了,sgn表示符号函数,当f(x) 0的时候,sgn(f(x) = +1, 当f(x) 0的时候sgn(f(x)
5、= 1。 但是在众多划分直线中应该如何取得最优的划分直线f(x)?8ppt课件课件2.线性支持向量机 划分原则:让这条直线到给定样本中最近的点最远第一种分法:第二种分法:9ppt课件课件2.线性支持向量机 这两种分法哪种更好呢?从直观上来说,就是分割的间隙越大越好,把两个类别的点分得越开越好。就像我们平时判断一个人是男还是女,就是很难出现分错的情况,这就是男、女两个类别之间的间隙非常的大导致的,让我们可以更准确的进行分类。在在SVM中,称为中,称为Maximum Marginal,是,是SVM的一个理论基的一个理论基础之一。础之一。选择使得间隙最大的函数作为分割平面是由很多道理的,比如说从概率
展开阅读全文