人教版2017高中数学选修1-2第一章-统计案例-《回归分析》课件PPT.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《人教版2017高中数学选修1-2第一章-统计案例-《回归分析》课件PPT.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 回归分析 人教版 2017 高中数学 选修 第一章 统计 案例 回归 分析 课件 PPT 下载 _其他版本_数学_高中
- 资源描述:
-
1、3.13.1回归分析的基本思想回归分析的基本思想及其初步应用及其初步应用(第一课时)(第一课时) 1 1通过典型案例的探究,进一步了解回归分析的基本思想、通过典型案例的探究,进一步了解回归分析的基本思想、方法及其初步应用方法及其初步应用 2 2让学生经历数据处理的过程,培养他们对数据的直观感让学生经历数据处理的过程,培养他们对数据的直观感觉,体会统计方法的特点,认识统计方法的应用,通过使用转化觉,体会统计方法的特点,认识统计方法的应用,通过使用转化后的数据,求相关指数,运用相关指数进行数据分析、处理的方后的数据,求相关指数,运用相关指数进行数据分析、处理的方法法 3 3从实际问题中发现已有知识
2、的不足,激发好奇心,求知从实际问题中发现已有知识的不足,激发好奇心,求知欲,通过寻求有效的数据处理方法,开拓学生的思路,培养学生欲,通过寻求有效的数据处理方法,开拓学生的思路,培养学生的探索精神和转化能力,通过案例的分析使学生了解回归分析在的探索精神和转化能力,通过案例的分析使学生了解回归分析在实际生活中的应用,增强数学取之生活,用于生活的意识,提高实际生活中的应用,增强数学取之生活,用于生活的意识,提高学习兴趣学习兴趣 本节课通过必修本节课通过必修3 3熟悉有例题回顾线性相关关系知熟悉有例题回顾线性相关关系知识,通过实际问题中发现已有知识的不足,引出随机识,通过实际问题中发现已有知识的不足,
3、引出随机误差、残差、残差分析的概念,进而运用残差来进行误差、残差、残差分析的概念,进而运用残差来进行数据分析,通过例题讲解掌握用残差分析判断线性回数据分析,通过例题讲解掌握用残差分析判断线性回归模型的拟合效果。掌握建立回归模型的步骤。归模型的拟合效果。掌握建立回归模型的步骤。 本节内容学生内容不易掌握,通过知识整理与比本节内容学生内容不易掌握,通过知识整理与比较引导学生进行区分、理解。通过对典型案例的探究,较引导学生进行区分、理解。通过对典型案例的探究,练习进行巩固了解回归分析的基本思想方法和初步应练习进行巩固了解回归分析的基本思想方法和初步应用用从某大学中随机选取从某大学中随机选取8 8名女
4、大学生,其身高和体重数名女大学生,其身高和体重数据如下表所示:据如下表所示: 怎样根据一名女大学生的身高预报她的体重,并预怎样根据一名女大学生的身高预报她的体重,并预报一名身高为报一名身高为172 cm172 cm的女大学生的体重?的女大学生的体重? 编号12345678身高/cm165165157170175165155170体重/kg4857505464614359niii 1n2ii 1baybx.xxyyxx$根据必修根据必修3 2.33 2.3变量相关关系解决这个问题的方法:变量相关关系解决这个问题的方法:1.1.先判断是两个变量是否具有线性相关关系先判断是两个变量是否具有线性相关关
5、系(1)(1)作散点图,如图所示作散点图,如图所示( (见课本见课本P82P82:图:图3.1-1)3.1-1)2.2.根据线性回归的系数公式,根据线性回归的系数公式,求回归直线方程求回归直线方程 0.849x-85.7120.849x-85.712y$3.3.由线性回归方程可以估计其位由线性回归方程可以估计其位置值为置值为 60.316(60.316(千克千克) )左右。左右。 y$具有较好的线性相关关系具有较好的线性相关关系性质:回归直线一定过样本中心点性质:回归直线一定过样本中心点(2)(2)计算计算相关系数相关系数这些点并不都在同一条直线上,上述直线并不能精确这些点并不都在同一条直线上
6、,上述直线并不能精确地反映地反映x与与y之间的关系,之间的关系,y 的值不能完全由的值不能完全由x 确定,确定,它们之间是统计相关关系,它们之间是统计相关关系,y 的实际值与估计值之间的实际值与估计值之间存在着误差存在着误差因此因此, ,在统计学中设它们的线性回归模型为在统计学中设它们的线性回归模型为: :ybxae其中其中a,ba,b为模型的未知参数为模型的未知参数,e,e为为y y与与bx+abx+a之间的误差,之间的误差,称它为随机误差,它是随机变量。且称它为随机误差,它是随机变量。且 2E e0,D e 线性回归模型完整表达式为线性回归模型完整表达式为 2y bx a eE e0,D
7、e, ,x x称为称为_变量变量,y,y称为称为_变量变量. .解释解释预报预报线性回归模型中随机误差的主要来源线性回归模型中随机误差的主要来源线性回归模型中的预报值线性回归模型中的预报值 与真实情况与真实情况y y引起的误差;引起的误差;观测与计算观测与计算( (用用 代替代替b a)b a)产生的误差;产生的误差;省略了一些因素的影响省略了一些因素的影响( (如生活习惯等)如生活习惯等)产生的误差产生的误差. .y$ba$在线性回归模型中,在线性回归模型中,e e为用为用bx+abx+a的预报真实值的预报真实值y y的随机的随机误差,它是一个不可观测的量,那么应该怎样研究随误差,它是一个不
8、可观测的量,那么应该怎样研究随机误差?机误差?在实际应用中,我们用在实际应用中,我们用 估计估计 bx+a y bx a$ $ey- bxa所以所以 的估计量为的估计量为ey y $iix,yi 1,2,3,nL对于样本点对于样本点iiieybxai1,2,3,nLiiiiieyyybxan1,2,3,n$L它们的随机误差为它们的随机误差为估计值为估计值为称相应于点称相应于点 的残差的残差iiiex ,y坐标纵轴为残差变量,横轴可以有不同的选择;坐标纵轴为残差变量,横轴可以有不同的选择;若模型选择的正确,残差图中的点应该分布在以横轴若模型选择的正确,残差图中的点应该分布在以横轴为中心的带形区域
9、;为中心的带形区域;对于远离横轴的点,要特别注意。对于远离横轴的点,要特别注意。错误数据模型问题身高与体重残差图异常点残差的作用残差的作用1.1.通过残差表或残差图发现原始数据中的可疑数据通过残差表或残差图发现原始数据中的可疑数据通过残差通过残差 来判断模型拟合的效果这种来判断模型拟合的效果这种分析工作称为分析工作称为残差分析残差分析1, 2, 3, .ne e ee通过残差表或残差图判断模型拟合的效果是直观判通过残差表或残差图判断模型拟合的效果是直观判断,如何精确判断模型拟合的效果?断,如何精确判断模型拟合的效果?引入参数引入参数R R2 2n2ii2i 1n2ii 1yyR1yy $n2i
10、i 1yy来精确该画模型拟合效果来精确该画模型拟合效果n2iii 1yy$对于己获取的样本数据,在上式子中对于己获取的样本数据,在上式子中 是定是定值,值, 越小,即残差平方和越小,越小,即残差平方和越小,R R2 2越大,说越大,说明模型拟合效果越好。明模型拟合效果越好。引入例中参数引入例中参数R R2 2计算得约为计算得约为0.640.64说明女大学生体重差说明女大学生体重差异有百分之六十四是由身高引起的异有百分之六十四是由身高引起的. .知识点知识点 线性回归分析线性回归分析1.1.对线性回归模型的三点说明对线性回归模型的三点说明(1)(1)非确定性关系:线性回归模型非确定性关系:线性回
11、归模型y=bx+a+ey=bx+a+e与确与确定性函数定性函数y=bx+ay=bx+a相比,它表示相比,它表示y y与与x x之间是统计相之间是统计相关关系关关系( (非确定性关系非确定性关系),),其中的随机误差其中的随机误差e e提供了提供了选择模型的准则以及在模型合理的情况下探求最选择模型的准则以及在模型合理的情况下探求最佳估计值佳估计值a a,b b的工具的工具. .(2)(2)线性回归方程线性回归方程 中中 , 的意义是:以的意义是:以 为为基数,基数,x x每增加每增加1 1个单位,个单位,y y相应地平均增加相应地平均增加 个单位个单位. .(3)(3)线性回归模型中随机误差的主
展开阅读全文