全套更高更妙的物理竞赛ppt课件竞赛课件9:动量与动量守恒.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《全套更高更妙的物理竞赛ppt课件竞赛课件9:动量与动量守恒.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全套 更高 更妙 物理 竞赛 ppt 课件 动量 守恒
- 资源描述:
-
1、中国航天CZ1FIp 0tFtmvmv 动量定理动量定理 动量定理的应用动量定理的应用 (1)遵从矢量性与独立性原理遵从矢量性与独立性原理(3)尽量取大系统与整过程尽量取大系统与整过程iiIp 如图所示,顶角为如图所示,顶角为2、内壁光滑的圆锥体倒立竖直固定在、内壁光滑的圆锥体倒立竖直固定在P点,点,中心轴中心轴PO位于竖直方向,一质量为位于竖直方向,一质量为m的质点以角速度的质点以角速度绕竖直轴沿圆锥内壁做匀绕竖直轴沿圆锥内壁做匀速圆周运动,已知速圆周运动,已知a、b两点为质点两点为质点m运动所通过的圆周一直径上的两点,求质点运动所通过的圆周一直径上的两点,求质点m从从a点经半周运动到点经半
2、周运动到b点,圆锥体内壁对质点施加的弹力的冲量点,圆锥体内壁对质点施加的弹力的冲量分析受力:分析受力:mgFNF向向运动半周动量变化量为运动半周动量变化量为22 pmvm r2cotmgmr 2cotgr 其中轨道半径其中轨道半径r由由 合外力冲量为合外力冲量为2cot Igm重力冲量为重力冲量为 GImgIIGIN弹力冲量为弹力冲量为 222cot NImgmab2OP 如图所示,如图所示,质量为质量为M的小车在光滑水平面上以的小车在光滑水平面上以v0向左匀速运动,一质量为向左匀速运动,一质量为m的小球从高的小球从高h处自由下落,与小车碰撞后,反弹上升的高度仍为处自由下落,与小车碰撞后,反弹
3、上升的高度仍为h设设Mm,碰,碰撞时弹力撞时弹力FNmg,球与车之间的动摩擦因数为,球与车之间的动摩擦因数为,则小球弹起后的水平速度为,则小球弹起后的水平速度为A. B. 0 C. D. v02gh22gh Mh 小球与车板相互作用,小球动量发生变化:水平方向动量小球与车板相互作用,小球动量发生变化:水平方向动量从从0mvx,竖直方向动量大小不变,方向反向,对小球分别竖直方向动量大小不变,方向反向,对小球分别在竖直、水平方向运用动量定理。在竖直、水平方向运用动量定理。 设小球与车板相互作用时设小球与车板相互作用时间间t,小球碰板前速度,小球碰板前速度vy,由,由2122yymvmghvgh得得
4、由动量定理FfFNNxFtmv 水水平平方方向向22xvgh 22NFtmghmgh 直直方方向向竖竖mv0 如图所示,如图所示,滑块滑块A和和B用轻线连接在一起后放在水平桌面上,水平恒力用轻线连接在一起后放在水平桌面上,水平恒力F作用在作用在B上,使上,使A、B一起由静止开始沿水平桌面滑动已知滑块一起由静止开始沿水平桌面滑动已知滑块A、B与水平桌与水平桌面之间的动摩擦因数均为面之间的动摩擦因数均为力力F作用时间作用时间t后后A、B连线断开,此后力连线断开,此后力F仍作用于仍作用于B试求滑块试求滑块A刚刚停住时,滑块刚刚停住时,滑块B的速度大小?两滑块质量分别为的速度大小?两滑块质量分别为mA
5、、mB A BF设绳断时设绳断时A、B速度为速度为V,绳断后,绳断后A运运动时间为动时间为T;则在则在t+T时间内对系统有时间内对系统有 ABBBFmmgtTm v 而在而在t时间内对系统有时间内对系统有 ABABFmmgtmmV 其中其中Vg T ABABFmmgTtg mm ABABBBFmmgFtmmvmg ABABFmmgtmm 如图所示,椭圆规的尺如图所示,椭圆规的尺AB质量为质量为2m,曲柄,曲柄OC质量为质量为m,而套管而套管A、B质量均为质量均为M已知已知OC=AC=CB=l;曲柄和尺的重心分别在其中点上;曲柄和尺的重心分别在其中点上;曲柄绕曲柄绕O轴转动的角速度轴转动的角速度
6、为常量;开始时曲柄水平向右,求:曲柄转成竖直向上为常量;开始时曲柄水平向右,求:曲柄转成竖直向上过程中,外力对系统施加的平均冲量过程中,外力对系统施加的平均冲量 CBAO 确定曲柄确定曲柄m、尺、尺2m、套管、套管A、B质心的速度,确定质点系的动质心的速度,确定质点系的动量变化,对系统运用动量定理量变化,对系统运用动量定理曲柄、尺的质心及套管A、B的速度相关关系如示CBAOt v曲柄质心速度曲柄质心速度2lv Cv尺质心速度尺质心速度cvl 套管套管A速度速度CvAnvAv套管套管B速度速度CvAnv2m lp 动量动量动量动量2cpm l 2ABpMl 系统动量大小不变为522pmMl 0p
7、tp由动量定理,在从水平变成竖直过程中由动量定理,在从水平变成竖直过程中0tIppp 5222mMl 如图所示,光滑的水平面上停着一只木球和载人小车,木如图所示,光滑的水平面上停着一只木球和载人小车,木球质量为球质量为m,人和车总质量为,人和车总质量为M,已知,已知M m=16 1,人以速率,人以速率v沿水平面将木球沿水平面将木球推向正前方的固定挡板,木球被挡板弹回之后,人接住球后再以同样的对地速率推向正前方的固定挡板,木球被挡板弹回之后,人接住球后再以同样的对地速率将球推向挡板设木球与挡板相碰时无动能损失求人经过几次推木球后,再也将球推向挡板设木球与挡板相碰时无动能损失求人经过几次推木球后,
8、再也不能接住木球?不能接住木球?对木球与载人小车这个系统,对木球与载人小车这个系统,动量从初时的动量从初时的0,到最终末动,到最终末动量至少为量至少为(M+m)v,是墙对是墙对木球冲量作用的结果木球冲量作用的结果: 2nmvmM v172n 经经9次推木球后,再也接不住木球次推木球后,再也接不住木球 一根均匀的不可伸缩的软缆绳全长为一根均匀的不可伸缩的软缆绳全长为l、质量为、质量为M开始时,开始时,绳的两端都固定在邻近的挂钩上,自由地悬着,如图(甲)某时刻绳的一端松绳的两端都固定在邻近的挂钩上,自由地悬着,如图(甲)某时刻绳的一端松开了,缆绳开始下落,如图(乙),每个挂钩可承受的最大负荷为开了
9、,缆绳开始下落,如图(乙),每个挂钩可承受的最大负荷为FN(大于缆绳(大于缆绳的重力的重力Mg),为使缆绳在下落时,其上端不会把挂钩拉断,),为使缆绳在下落时,其上端不会把挂钩拉断,Mg与与FN必须满足什必须满足什么条件?假定下落时,缆绳每个部分在达到相应的最终位置之后就都停止不动么条件?假定下落时,缆绳每个部分在达到相应的最终位置之后就都停止不动 甲甲乙乙x x ABC松开左缆绳松开左缆绳, ,自由下落自由下落h时,左侧绳速度为时,左侧绳速度为挂钩所受的力由两部分组成:一是承静止悬挂在钩下的那部分缆绳的重;一是受紧接着落向静止部分最下端的绳元段的冲力F,挂钩不被拉断,这两部分力的总和不得超过
10、钩的最大负荷 2gh 研究左边绳处于最下端的极小段绳元研究左边绳处于最下端的极小段绳元 x:受右受右边静止绳作用边静止绳作用,使之速度在极短时间使之速度在极短时间 t内减为内减为0,由动量定理由动量定理Ftm v 22ghv 因时间极短内,忽略重力冲量,元段的平均速度取222ghMFttghl hFMgl 当左边绳全部落下并伸下时当左边绳全部落下并伸下时, ,h=lFMg 挂钩不断的条件是挂钩不断的条件是2NFMg 0Lxnn 一根铁链,平放在桌面上,铁链每单位长度的质量为一根铁链,平放在桌面上,铁链每单位长度的质量为现用手提起链的一端,使之以速度现用手提起链的一端,使之以速度v竖直地匀速上升
11、,试求在从竖直地匀速上升,试求在从一端离地开始到全链恰离地,手的拉力的冲量,链条总长为一端离地开始到全链恰离地,手的拉力的冲量,链条总长为L 图示是链的一微元段离地的情景,该段微元长 Fx该段微元质量 mx 设该元段从静止到被提起历时设该元段从静止到被提起历时t,那么竖直上升部分长那么竖直上升部分长x的的链条在手的拉链条在手的拉力力F、重力的冲量作用下,发生了末段、重力的冲量作用下,发生了末段微元动量的变化,由动量定理微元动量的变化,由动量定理: : gFxtm v 2g=xFxvvt 2gFvx 2gvtv0,Ltv 力随时间线性变化,故可用算术平均力求整个过程手拉力F的总冲量: 212LI
12、vgLv 22gLLvv 如图所示,水车有一孔口,水自孔口射出已知水面如图所示,水车有一孔口,水自孔口射出已知水面距孔口高距孔口高h,孔口截面积为,孔口截面积为a,水的密度为,水的密度为若不计水车与地面的摩若不计水车与地面的摩擦,求水车加于墙壁的水平压力擦,求水车加于墙壁的水平压力 h先求水从孔口射出的速度v212ghaxax v 对处于孔口的一片水由动能定理对处于孔口的一片水由动能定理: :2vgh 对整个水车,水平方向受墙壁的压力对整个水车,水平方向受墙壁的压力F,在时间,在时间 t内有质量为内有质量为 2ght a 的水获得速度的水获得速度 2gh由动量定理由动量定理: :22Ftght
13、 agh 2Fahg 水车加于墙壁的压力是该力的反作用力 ,大小为2hFa g 逆风行船问题逆风行船问题: 如图如图,帆船在逆风的情况下仍能帆船在逆风的情况下仍能只依靠风力破浪航行设风向从只依靠风力破浪航行设风向从B向向A,位于,位于A点处的帆船要想点处的帆船要想在静水中最后驶达目标在静水中最后驶达目标B点,应如何操纵帆船?要说明风对船帆的点,应如何操纵帆船?要说明风对船帆的作用力是如何使船逆风前进达到目标的作用力是如何使船逆风前进达到目标的AB风向风向设计如示航线设计如示航线 风向风向F风对帆风对帆F1F2航线航线船帆船帆AB 航向与风向成角风吹到帆面,与帆面发生弹性碰撞后以同样的反射风吹到
14、帆面,与帆面发生弹性碰撞后以同样的反射角折回风与帆的碰撞,对帆面施加了一个冲量,角折回风与帆的碰撞,对帆面施加了一个冲量,使船受到了一个方向与帆面垂直的压力使船受到了一个方向与帆面垂直的压力F,这个力,这个力沿船身方向及垂直于船身方向的分力沿船身方向及垂直于船身方向的分力F1和和F2,F2正正是船沿航线前进的动力,是船沿航线前进的动力,F1则有使船侧向漂移的作则有使船侧向漂移的作用,可以认为被水对船的横向阻力平衡用,可以认为被水对船的横向阻力平衡风帆与船行方向成角只要适时地改变只要适时地改变船身走向,同时船身走向,同时调整帆面的方位,调整帆面的方位,船就可以依靠风船就可以依靠风力沿锯齿形航线力
15、沿锯齿形航线从从A驶向驶向B 续解续解mv设帆面受风面积为设帆面受风面积为S,空气密度为,空气密度为,风速为,风速为v,在,在t时间内时间内到达帆面并被反弹的空气质到达帆面并被反弹的空气质量是量是F2F1F风对帆风对帆mvpm sinmvt S 反弹空气动量变化量反弹空气动量变化量 2sinsinpvt S v 222sinS vt 由动量定理由动量定理,帆帆(船船)对风的冲力对风的冲力 222sinFtS vt 帆(船)受到的前进动力F2为 2222sinsinS vF 将风即运动的空气与帆面的碰撞简化为弹性碰撞将风即运动的空气与帆面的碰撞简化为弹性碰撞! ! 船沿航线方向的动力大小与扬帆方
16、向有关,帆面船沿航线方向的动力大小与扬帆方向有关,帆面与船行方向的夹角与船行方向的夹角适当,可使船获得尽大的动力适当,可使船获得尽大的动力设风筝面与设风筝面与水平成水平成角,风对角,风对风筝的冲力为风筝的冲力为F,其中作为风,其中作为风筝升力的分量为筝升力的分量为Fy,风筝面积,风筝面积为为S,右图给出各矢量间关系,右图给出各矢量间关系 放风筝时,风沿水平方向吹来,要使风筝得到最大上放风筝时,风沿水平方向吹来,要使风筝得到最大上升力,求风筝平面与水平面的夹角设风被风筝面反射后的方向遵升力,求风筝平面与水平面的夹角设风被风筝面反射后的方向遵守反射定律守反射定律 mvmvFFysinmvt S m
17、v风筝截面风筝截面 22sincos 90F tv S 222sincosyFv S 4222sincos22Sv 222222 1coscosSv 根据基本不等式性质2212cos1 cos, cos3 当当时时max24 39yFFSv 由动量定理:由动量定理: 反冲模型反冲模型 Mm系统总动量为零系统总动量为零平均动量守恒平均动量守恒221122kEmvMV在系统各部分相互作用过程的各瞬间,总有在系统各部分相互作用过程的各瞬间,总有 1212mmSSvvtt :11220m vm v21120m vm v11220mmm sm s常以位移表示速度常以位移表示速度须更多关注须更多关注“同一
18、性同一性”与与“同时同时性性”“同一性同一性”:取同一惯性参考系描述取同一惯性参考系描述m1、m2的动量的动量“同时性同时性”:同一时段系统的总动量守恒同一时段系统的总动量守恒OxS人人 一条质量为一条质量为M、长为、长为L的小船静止在平静的的小船静止在平静的水面上,一个质量为水面上,一个质量为m的人站立在船头如果不计水的人站立在船头如果不计水对船运动的阻力,那么当人从船头向右走到船尾的时对船运动的阻力,那么当人从船头向右走到船尾的时候,船的位移有多大?候,船的位移有多大?设船设船M对地位移为对地位移为x,以向右方向为正,用,以向右方向为正,用位移表速度,由位移表速度,由 0m LxMxxmL
19、mM “”表示船的位移方向向左表示船的位移方向向左人对船的位移人对船的位移向右取正向右取正船对地的位移船对地的位移未知待求未知待求运算法则运算法则 如图所示,质量为如图所示,质量为M、半径为、半径为R的光滑圆环静止的光滑圆环静止在光滑的水平面上,有一质量为在光滑的水平面上,有一质量为m的小滑块从与的小滑块从与O等高处等高处开始无初速下滑,当到达最低点时,圆环产生的位移大开始无初速下滑,当到达最低点时,圆环产生的位移大小为小为_R设圆环位移大小为设圆环位移大小为x,并以向左为正并以向左为正:mMORxR 0m RxMx有有mxRMm 即即“”表示环位移方向向表示环位移方向向右右mRMm 气球质量
20、为气球质量为M,下面拖一条质量不计的软梯,质量为,下面拖一条质量不计的软梯,质量为m的人站在软梯上端距地面高为的人站在软梯上端距地面高为H,气球保持静止状态,求,气球保持静止状态,求人能安全人能安全到达地面,软梯的最小长度;到达地面,软梯的最小长度;若软梯长为若软梯长为H,则人从软梯下端到上,则人从软梯下端到上端时距地面多高?端时距地面多高?HL-汽球相对人汽球相对人上升高度即绳上升高度即绳梯至少长度梯至少长度 0mHMLH以向下为正,用位移表速度以向下为正,用位移表速度LMmHM H人上升高度人上升高度h以向上为正,用位移表速度,以向上为正,用位移表速度, 0mhMHhhMHMm 如图所示浮
21、动起重机(浮吊)从岸上吊起如图所示浮动起重机(浮吊)从岸上吊起m=2 t的重物开始时起重杆的重物开始时起重杆OA与竖直方向成与竖直方向成60角,当转到杆与竖直角,当转到杆与竖直成成30角时,求起重机的沿水平方向的位移设起重机质量为角时,求起重机的沿水平方向的位移设起重机质量为M=20 t,起重杆长,起重杆长l=8 m,水的阻力与杆重均不计,水的阻力与杆重均不计 水平方向动量守恒,设右为正,起重机位移水平方向动量守恒,设右为正,起重机位移x60 30 0sin60sin30Mxm lx0.266mx 重物对起重机水重物对起重机水平位移平位移x设右为正,梯形木块位移设右为正,梯形木块位移x,系统水
22、平方向动量守恒:系统水平方向动量守恒: 1230cos60mM xmhxmhx 0.15mx 如图所示,三个重物如图所示,三个重物m1=20 kg, m2=15 kg,m3=10 kg,直角梯形物块,直角梯形物块M=100 kg三重物由一绕过两个定滑轮三重物由一绕过两个定滑轮P和和Q的绳的绳子相连当重物子相连当重物m1下降时,重物下降时,重物m2在梯形物块的上面向右移动,而在梯形物块的上面向右移动,而重物重物m3则沿斜面上升如忽略一切摩擦和绳子质量,求当重物则沿斜面上升如忽略一切摩擦和绳子质量,求当重物m1下下降降1m时,梯形物块的位移时,梯形物块的位移 m1m2m3MPQ60 M典型情景:典
23、型情景:vmmvmmMvMMmvmMFmFvm2201122mmtmFsmvmv 2201122MMtMFsMvMv -2222001111()()2222MmmtMtMF ssmvMvmvMv “一对力的功一对力的功”用其中一个力的大小与两物体相对位移的乘积来计算用其中一个力的大小与两物体相对位移的乘积来计算 模型特征:模型特征:由两个物体组成的系统,所受合外力为零而相互作用力为一对恒力规律种种:规律种种:动力学规律动力学规律 两物体的加速度大小与质量成反比两物体的加速度大小与质量成反比运动学规律运动学规律 两个做匀变速运动物体的追及问题或相对运动问题两个做匀变速运动物体的追及问题或相对运动
24、问题动量规律动量规律 系统的总动量守恒系统的总动量守恒能量规律能量规律 力对力对“子弹子弹”做的功等于做的功等于“子弹子弹”动能的增量:动能的增量:力对力对“木块木块”做功等于做功等于“木块木块”动能增动能增量:量:一对力的功等于系统动能增量:一对力的功等于系统动能增量:图象图象1 1 图象图象2 2图象描述图象描述“子弹”穿出”木块”“子弹”迎击”木块”未穿出vmvmtvMtdtv0t01tanfm 1tanfM tv0vmvMmMmvMvMm 1tanfm 1tanfM d图象描述图象描述“子弹”未穿出”木块”“子弹”与”木块”间作用一对恒力vmdtv0t01tanfm 1tanfM tv
25、0vmmmvMm 1tanfm 1tanfM smmmvMm t0 v 如图所示,长为如图所示,长为L的木板的木板A右边固定着一个挡板,包括挡板在内的总右边固定着一个挡板,包括挡板在内的总质量为质量为1.5M,静止在光滑水平面上,有一质量为,静止在光滑水平面上,有一质量为M的小木块的小木块B,从木板,从木板A的左端开的左端开始以初速度始以初速度v0在木板在木板A上滑动,小木块上滑动,小木块B与木板与木板A间的摩擦因数为间的摩擦因数为小木块小木块B滑到木板滑到木板A 的右端与挡板发生碰撞已知碰撞过程时间极短,且碰后木板的右端与挡板发生碰撞已知碰撞过程时间极短,且碰后木板B恰好滑到木板恰好滑到木板
展开阅读全文