抛物线精选教学PPT课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《抛物线精选教学PPT课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 抛物线 精选 教学 PPT 课件
- 资源描述:
-
1、课题:课题: 抛物线及其标准方程抛物线及其标准方程复习:复习:椭圆、双曲线的第二定义:椭圆、双曲线的第二定义:与一个定点的距离和一条定直线的距离的比与一个定点的距离和一条定直线的距离的比是常数是常数e的点的轨迹,当的点的轨迹,当0e 1时,是椭圆,时,是椭圆,MFl0e 1lFMe1FMle=1当当e1时,是双曲线。时,是双曲线。当当e=1时,它又是什么曲线?时,它又是什么曲线?平面内与一个定点平面内与一个定点F和一条定直线和一条定直线l的距离相等的点的轨迹叫做的距离相等的点的轨迹叫做抛物线抛物线。定点定点F叫做抛物线的叫做抛物线的焦点焦点。定直线定直线l 叫做抛物线的叫做抛物线的准线准线。
2、一、定义一、定义的轨迹是抛物线。则点若MMNMF, 1即即: FMlN二、标准方程二、标准方程FMlN如何建立直角如何建立直角 坐标系?坐标系?想一想想一想yxoy=ax2+bx+cy=ax2+cy=ax2二、标准方程二、标准方程xyoFMlNK设设KF= p则则F( ,0),),l:x = - p2p2设点设点M的坐标为(的坐标为(x,y),), 由定义可知,由定义可知,化简得化简得 y2 = 2px(p0)22)2(pxypx2 方程方程 y2 = 2px(p0)叫做叫做抛物线的标准方程。抛物线的标准方程。其中其中p为正常数,它的几何意义是为正常数,它的几何意义是 焦焦 点点 到到 准准
3、线线 的的 距距 离离yxoyxoyxoyxo 图图 形形 焦焦 点点 准准 线线 标准方程标准方程例例1 1、(1)已知抛物线的标准方程是)已知抛物线的标准方程是y2 = 6x, 求它的焦点坐标和准线方程;求它的焦点坐标和准线方程;(2)已知抛物线的方程是)已知抛物线的方程是y = 6x2, 求它的焦点坐标和准线方程;求它的焦点坐标和准线方程;(3)已知抛物线的焦点坐标是)已知抛物线的焦点坐标是F(0,-2),), 求它的标准方程。求它的标准方程。例例2 2、求过点求过点A(-3,2)的抛物线的)的抛物线的 标准方程。标准方程。AOyx解:当抛物线的焦点在解:当抛物线的焦点在y轴轴的正半轴上
4、时,把的正半轴上时,把A(-3,2)代入代入x2 =2py,得,得p= 49当焦点在当焦点在x轴的负半轴上时,轴的负半轴上时,把把A(-3,2)代入)代入y2 = -2px,得得p= 32抛物线的标准方程为抛物线的标准方程为x2 = y或或y2 = x 。2934例例3 3、M是抛物线是抛物线y2 = 2px(P0)上一点,若点)上一点,若点 M 的横坐标为的横坐标为X0,则点,则点M到焦点的距离是到焦点的距离是 X0 + 2pOyxFM练习:练习:1、根据下列条件,写出抛物线的标准方程:、根据下列条件,写出抛物线的标准方程:(1)焦点是)焦点是F(3,0););(2)准线方程)准线方程 是是
5、x = ;41(3)焦点到准线的距离是)焦点到准线的距离是2。y2 =12xy2 =xy2 =4x、 y2 = -4x、x2 =4y 或或 x2 = -4y2、求下列抛物线的焦点坐标和焦点坐标:、求下列抛物线的焦点坐标和焦点坐标: (1)y2 = 20 x (2)x2= y (3)2y2 +5x =0 (4)x2 +8y =021焦点坐标焦点坐标准线方程准线方程(1)(2)(3)(4)(5,0)x= -5(0,)18y= - 188x= 5(- ,0)58(0,-2)y=2小小 结结 :1、椭圆、双曲线与抛物线的定义的联系、椭圆、双曲线与抛物线的定义的联系 及其区别;及其区别;2、会运用抛物线
展开阅读全文