硅负极材料的相关应用介绍PPT课件(同名125186).ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《硅负极材料的相关应用介绍PPT课件(同名125186).ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 负极 材料 相关 应用 介绍 PPT 课件 同名 125186
- 资源描述:
-
1、寿命寿命硅负采材料Silicon anode with life cycle lifeProf. Xinping QiuDepartment of Chemistry, Tsinghua UniversityBeijing, 100084, China5/25/2022Difficulties for silicon anode applicationLarge volume exchange lead to structural failure of electrodeRelative low conductivity and rate performanceiMEFnW0*Electron
2、 numberEnergy densityMolecular massSi: 4200 m Ah/g2Multi electron reaction materials5/25/2022J.R. Dahn, Electrochem. Solid-State Lett., 2001, 4, A137. J.R. Dahn, J. Electrochem. Soc. 2003, 150, A1457.3Colossal volume change Change in (a) length + and width x, (b) height, and (c) volume of the a-Si t
3、ower compared to (d) voltage vs. AFM scan number.Schematic diagram of the in situ AFM apparatus.Optical micrograph of a Li-alloy film after expansion5/25/2022Y. Cui, Nat. Nanotechnol., 2008, 3, 31. | Y. Cui, Nano Lett. 2011, 11, 2949. | G. Yushin, Nat. Mater., 2010, 9, 353. | G.A. Ozin, Adv. Funct.
4、Mater. 2009, 19, 1999. | X. J. Huang, Adv. Mater. 2011, 23, 4938.| X.P. Qiu, Electrochem. Commun., 2007, 5, 930. | S.M. Lee, Electrochim. Acta, 2008, 53, 4500. | J. G. Zhang, J. Electrochem. Soc., 2010, 7, A765.| J.R. Dahn, Electrochem. Solid-State Lett., 2007, 10, A17. | G. Yushin, ACS Appl. Mater.
5、 Inter., 2010, 11, 3004. | G. Yushin, Science, 2011, 334, 75.Si based anodeNano materialsSi arrayCurrent collector Binder 4Strategies for silicon anodesParticle pulverization “A strong size dependence of fracture in silicon material was discovered that there exists a critical particle size of 150 nm
6、 below which cracking did not occur.” 2Size effect1 H Zhang, Nano Letters 2012, 12, 2778.; 2 XH Liu, ACS Nano. 2012, 2, 152215315/25/20225ElectrodeInterfaceParticleElectronic contactStability of SEI filmFracture and PulverizationCurrent collector; Binder; ArrayStability in Si-based material 1Li inse
7、rtionLi extractionLong cycles5/25/20226The exposed active surface due to the volume change cause continual formation of SEI films and low coulombic efficiency (CE).Research routesReduce the particle size to accommodate SEI filmDesign porous or hollow structure to buffer the volume expansion Composit
8、e with C or Metal (Cu) to increase electronic conductivity and modify the interface between Si and electrolyte.Investigate new binder and electrolyte additives system for Si-based anode materialsStability of SEI film75 % SiH4 + 95 % Ar5 % H2 & 95 % Ar450C, 1 h-2.5 hCalcination 2N2 atmosphere900C, 4
9、hN2 atmosphere225C, 1h500C, 2hHeating under stirringPorous carbon80C, solvent evaporationCalcination 1Remove templateHClSi CVDPorous Si-C Nano CaCO3 Sucrose solutionDeposited siliconCarbon framework after 1st and 2nd calcination5/25/2022Porous Si/C compositeSynthesis Process5/25/2022Morphology 8 in
10、1 bold, 1 ePorous structure of carbon substrate can be observed from TEM imagesAfter CVD, silicon particles adhere to the framework and porous structure was maintained. Particle size of silicon is 10 nm and homogeneously dispersed.The deposited silicon in Porous Si-C is amorphous, as indicated by th
11、e absence of crystallites and broad diffuse rings in the SAED patterns. In contrast, when composite is heated to 700 C for 0.5 h, a lattice fringe corresponding to d111 = 0.31 nm for silicon is seen in Porous Si-C-700.Results and analysisSEM and TEM images5/25/20229020406080100Intensity (a.u.)2theta
12、 (degree) Si/C Si/C-700 Std.Silicon in 1 bold, 1 eObvious characteristic peak of crystal silicon after heat treatment at 700 C for 0.5 hThree obvious diffraction peaks around 28, 47 and 56 are found after heat treatment, which correspond very well to the (111), (220) and (311) peaks of silicon witho
13、ut any impurity peaks.The peak at 520 cm-1 (indicative of crystalline silicon) is not detected after silicon CVD. The bands centered around 155, 474 cm-1 and the weak shoulder at 400 cm-1 are typical features of amorphous silicon vibration modes 1.Results and analysis0200400100015002000G Porous C Si
14、/CIntensity (a.u.)Raman shift (cm-1)DStructural characterization1 D. Aurbach, J. Phys. Chem. C, 2007, 111, 11437.XRD patterns and Raman spectra N2 sorption isothermsPore size distributionBoth porous carbon and porous Si-C show type IV isotherm, which is typical characteristic of mesoporous structure
15、Obvious decrease of specific surface area (SSA) and pore volume after Si CVDPorous carbon:650 m2/g, 1.32 cc/gPorous Si-C:150 m2/g, 0.39 cc/gPores with diameter of 3 nm generated by decomposition of sucrosePores with diameter of 1040 nm due to the removal of CaCO3 template, which were reduced after S
16、i CVDPorous Structure 0.00.20.40.60.81.00100200300400500600700800900Volume STP (cc g-1)Relative Pressure, P/P0 Porous C Si/C0204060801000.00.20.40.60.81.01.21.4dV/dD (cc g-1 nm-1) Diameter (nm) Porous C Si/C5/25/202210Charge-Discharge curvesCycling performance1) 2nd charge capacity; 2) VC: vinylene
17、carbonate0800160024000.00.51.01.52.02.53.03.5100th50th 2ndPotential (vs Li/Li+)Capacity (mA h g-1)1st5/25/202211Electrochemical performance1st dch capacity: 2404 mAh/g1st ch capacity: 1541 mAh/g1st coulombic efficiency: 64.1%Reversible capacity1: 1504 mAh/gCapacity retention: 67% after 200 cyclesRec
18、ipe: Porous Si-C: CB : binder (PAA) = 6:2:2; Electrolyte: 1 M LiPF6 in EC-DMC- EMC(1:1:1 vol%) with 2wt% VC2; loading: 0.61 mg/cm2.Capacity is only based on active material. Current density: 0.1 A/g for 1-2 cycle, then 0.5 A/g; Voltage: 0.05 2.0 V vs. Li050100150200050010001500200025003000 Nano Si S
19、i/CCapacity (m Ah g-1)Cycle number80828486889092949698100C.E. (%)Rate capabilityIncrease current density from 0.1 to 2 A g-1, the specific capacity of Si/C composite is still above 500 m Ah g-1, when the current density changes back to 0.1 A g-1, more than 92% of the capacity at the first ten cycles
20、 is recoverable. 5/25/202212CurrentDensity(A/g)Discharge capacity(mAh/g)Charge capacity(mAh/g)Coulombic efficiency(%)0.192386293.40.562962699.51.046146099.72.03113111000.176675798.9020406080050010001500200025000.1 A/g2 A/g1 A/g0.5 A/gChargeDischargeCapacity (m Ah g-1)Cycle number0.1 A/gResults and a
21、nalysisNyquist plot of Si-C composite at the end of discharge after different cycles in 1 bold, 1 eElectrochemical impedance spectra (EIS) measurement in a 5.0 mV AC voltage signal in the 105 - 0.02 Hz frequency range. Before each EIS test, the electrodes were discharged to 0.01 V galvanostatically
22、and then remained at open-circuit for at least 2 h to stabilize their potential.The constancy of the characteristic frequency (20Hz, from 30-60 cycles) suggests that the kinetics of the charge transfer reaction does not vary upon cycling. Evolution of the resistance in mid-frequency region (inset) s
23、hows an increase in first 5 cycles then reduce and maintain around 40 Ohm in later cycles.Results and analysis0204060801000-20-40-60-80-100 D1 D10 D20 D30 D60Zimg (Ohm)Zre (Ohm)010 20 30 40 50 60020406080100120140RSur (Ohm)Cycle number Si/C Nano Si5/25/202213EIS test1 D. Guyomard, J. Mater. Chem., 2
展开阅读全文