信号与线性系统分析-第4章-课件共124页文档(同名118947).ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《信号与线性系统分析-第4章-课件共124页文档(同名118947).ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 信号 线性 系统分析 课件 124 文档 同名 118947
- 资源描述:
-
1、1 在线性空间中,任何矢量可用在线性空间中,任何矢量可用相互垂直相互垂直的单位矢量表的单位矢量表示。这组矢量称为示。这组矢量称为正交正交矢量集。矢量集。 一一. 正交函数集正交函数集 正交函数正交函数:函数:函数 1(t)和和 2(t)在区间在区间(t1,t2)内正交,则内正交,则0dt) t () t (21tt21 正交函数集正交函数集:n个函数个函数 1(t), n(t)在区间在区间(t1,t2)内构成的正交函数集内构成的正交函数集 i(t)满足满足 ji 0Kji , 0dt) t () t (ittji212 Ki为常数,如果为常数,如果Ki1,则称该函数集为,则称该函数集为归一化正
2、交归一化正交函数集函数集。 完备正交函数集完备正交函数集:在正交函数集之外,不存在函数:在正交函数集之外,不存在函数与之正交。与之正交。一个完备的正交函数集通常包括无穷多个函数。一个完备的正交函数集通常包括无穷多个函数。 正交复函数的定义:正交复函数的定义: ji 0Kji , 0dt) t () t (itt*ji21正交函数集例:(在区间正交函数集例:(在区间t0,t0+T,且,且T =2 )三角函数集:三角函数集:1,cos(n t),sin(n t);n1,2,3,复指数函数集:复指数函数集:ejn t;n0, 1, 2, 3二二. 信号分解为正交函数信号分解为正交函数 对任一函数对任
3、一函数f(t)用用n个正交函数的线性组合来近似个正交函数的线性组合来近似 n1jjj) t (C) t ( f选择选择Cj时使实际函数与近似函数之间的误差最小,取时使实际函数与近似函数之间的误差最小,取均方误差均方误差 21tt2n1jjj122dt) t (C) t ( ftt1要使均方误差最小,就是求函数的极值。对上式求极要使均方误差最小,就是求函数的极值。对上式求极值得值得 2121tt2jttjjdt) t (dt) t () t (fC 21ttjjdt) t () t (fK14于是可得误差于是可得误差 21tt2n1jjj122dt) t (C) t ( ftt1 n1jj2jn
4、1jj2jtt212KCKC2dt) t (ftt121 n1jtt2j2jn1jttjjtt212212121dt) t (Cdt) t () t ( fC2dt) t (ftt1 n1jj2jtt212KCdt) t (ftt121均方误差总是大于等于均方误差总是大于等于0,增大,增大n可使误差减小。可使误差减小。 5 当当n,误差为,误差为0,则有,则有帕斯瓦尔帕斯瓦尔(Parseval)方程方程 1jj2jtt2KCdt) t (f21帕斯瓦尔方程物理意义:如果帕斯瓦尔方程物理意义:如果f(t)是电压或电流信号,是电压或电流信号,则单位电阻上信号的总能量等于信号的各正交分量的则单位电阻
5、上信号的总能量等于信号的各正交分量的能量之和。能量之和。 1jjj) t (C) t ( f 1jtt2j2j1jj2j21dt) t (CKC 因此因此f(t)在区间在区间(t1,t2)可分解为无穷多项正交函数之和可分解为无穷多项正交函数之和 21ttjjjdt) t () t (fK1C 1jtt2jj21dt)t (C6 周期信号在区间周期信号在区间(t0,t0T)上可以展开成在完备正交上可以展开成在完备正交信号空间中的无穷级数。信号空间中的无穷级数。 三角函数集或复指数函数集是完备的正交函数集,由三角函数集或复指数函数集是完备的正交函数集,由其展开的级数统称为其展开的级数统称为傅里叶级
6、数傅里叶级数。一一. 周期信号的分解周期信号的分解 设有周期信号设有周期信号f(t),可分解为,可分解为 1nn1nn0) tnsin(b) tncos(a2a) t ( f an、bn称为称为傅里叶系数傅里叶系数。可由下式求得。可由下式求得0,1,2,n ,dt) tncos() t ( fT2a2T2Tn 7 an是是n的偶函数,即的偶函数,即 anan ;bn是是n的奇函数,即的奇函数,即 bnbn 。 f(t)分解式的另一种形式分解式的另一种形式 1nnn0)tncos(A2A) t ( f式中式中 A0=a0 abarctan baAnnn2n2nn 1,2,n ,dt) tnsin
7、() t ( fT2b2T2Tn nnnnnnsinAb cosAa 8例:将方波信号例:将方波信号展开为傅里叶展开为傅里叶级数。级数。 1f(t)t-T-1T解:傅里叶系数为解:傅里叶系数为 2T2Tndt) tncos() t ( fT2a2T002T)tnsin(n1T2)tnsin(n1T2 02T2T0dt) tncos(1T2dt) tncos()1(T20 9傅里叶级数的展开式为傅里叶级数的展开式为 2T2Tndt) tnsin() t (fT2b ) tnsin(n1) t5sin(51) t3sin(31) tsin(4) t ( f2T002T)tncos(n1T2)tnc
8、os(n1T2 1,3,5,n n42,4,6,n , 0)ncos(1 n2 02T2T0dt) tnsin(1T2dt) tnsin()1(T210图示方波信号分解图示方波信号分解吉布斯吉布斯(Gibbs)现象现象 :当:当n时,在间断点处有时,在间断点处有9%的偏差。的偏差。 如果方波信号如图所示如果方波信号如图所示1f(t)t-T-1T则傅里叶级数的展开式为则傅里叶级数的展开式为 ) t7cos(71) t5cos(51) t3cos(31) tcos(4) t ( f11 根据傅里叶系数计算式,根据傅里叶系数计算式,f(t)为偶函数,则系数为为偶函数,则系数为 0b ,dt) tnc
9、os() t ( fT4an2T0n f(t)为奇函数,则系数为为奇函数,则系数为 2T0nndt) tnsin() t ( fT4b , 0a为整数为整数mm21 , 0naAnnn 为整数为整数m21m221nbAnnn12 任何函数都可分解为奇函数和偶函数两部分任何函数都可分解为奇函数和偶函数两部分 f(t)fod(t)fev(t) 由于由于 f(t)fod(t)fev(t)fod(t)fev(t)所以所以 2) t( f) t ( f) t (fod 2) t( f) t ( f) t (fev 例例f(t)=et (t),则,则2) t(e) t (e) t (fttod 2) t(
10、e) t (e) t (fttev 0tf(t)0.50.50tf(t)0.513Ff(t)t-TTFf(-t)t-TTFfod(t)t-TTFfev(t)t-TT半波整流波形半波整流波形14全波整流信号全波整流信号 f1(t)=E|sin 0t| Ef1(t)t-TT 2T002T0ndt) tncos() tsin(TE4dt) tncos() t ( fT4a ) t4cos(152) t2cos(321E2) t (f001)( dt) tncos() tsin(TE402T000 令令)0,1,2,(n 1n)ncos(1E22 15求半波整流信号求半波整流信号f2(t)Esin(
11、0t) (sin 0t)的傅立叶级数。的傅立叶级数。Ef2(t)t-TT半波整流信号是由奇函数和偶函数两部分组成的:半波整流信号是由奇函数和偶函数两部分组成的:) t (f21) tsin(2E) t (f) t (f) t (f10evod2 ) t4cos(152) t2cos(32) tsin(21E00016 f(t)为奇谐函数:将为奇谐函数:将f(t)移动移动 T/2后,与原波形反相,后,与原波形反相,即对称于横轴即对称于横轴 f(t)f(t T/2) 1f(t)t-TT奇谐函数的傅里叶级数展开式中只含奇次谐波,不奇谐函数的傅里叶级数展开式中只含奇次谐波,不含偶次谐波。含偶次谐波。
12、) t5sin(b) t3sin(b) tsin(b ) t5cos(a) t3cos(a) tcos(a) t ( f53153117因为因为cosx(ejxejx)/2,所以,所以 1nnn0)tncos(A2A) t ( f 1ntjnjn1ntjnjn0eeA21eeA212Ann ntjnnntjnjneFeeA21nAnAn n n 1ntjnjn1ntjnjn0eeA21eeA212Ann 1n)tn( j)tn( jn0ee 2A2Ann18Fn称为复傅里叶系数,计算式为称为复傅里叶系数,计算式为 )jba(21sinjAcosA21eA21Fnnnnnnjnnn 2T2T2T
13、2Tdt) tnsin() t ( fT1jdt) tncos() t ( fT1, 2, 10,n dte ) t ( fT12T2Ttjn 2T2Tdt)tnsin(j) tn)cos(t ( fT119 傅里叶级数小结:傅里叶级数小结: -ntjnneFf(t) 1nn1nn0) tnsin(b) tncos(a2a) t ( f 1nnn0)tncos(A2A) t ( f)jba(21eA21Fnnjnnn , 2, 10,n dte ) t ( fT1F2T2Ttjnn 20一一. 周期信号的频谱周期信号的频谱 周期信号的傅里叶级数周期信号的傅里叶级数 1nnn0)tncos(A2
14、a) t ( fAn、Fn、 n与与n 有关,也即与频率有关,也即与频率 有关。有关。An或或|Fn|与与 之间的关系称为幅频特性,相应地可画出之间的关系称为幅频特性,相应地可画出频谱图,称为频谱图,称为幅度频谱幅度频谱。 n与与 之间的关系称为之间的关系称为相位频谱相位频谱。周期信号的频谱只在周期信号的频谱只在 n 处取值,是离散频谱。处取值,是离散频谱。 njnnntjnneAFeF) t ( f 21Sa(x)二二. 周期矩形脉冲的频谱周期矩形脉冲的频谱01T /2-T- /2f(t)t 22tjn2T2TtjnndteT1dte ) t ( fT1F定义定义取样函数取样函数为为xxsi
15、n)x(Sa Sa(x)为偶函数为偶函数 n2nsinT2TnTnsinT2n2nsinT 1)x(Salim0 x22)0m(0)m(Sa)2(Sa 所以所以在频谱图上在频谱图上 n 处,存在谱线,谱线间隔为处,存在谱线,谱线间隔为 。:为为整整数数时时,当当包包络络线线变变化化为为)m(m2)2(Sa T不变:不变: 减小,幅度减小,一周内谱线增加,间隔不变。减小,幅度减小,一周内谱线增加,间隔不变。 不变:不变:T增加,幅度减小,谱线间隔变密。增加,幅度减小,谱线间隔变密。图示频谱图图示频谱图。信号能量集中在第一个零点内,信号能量集中在第一个零点内, 2 / 2 f0 。定义周期矩形脉冲
16、信号的频带宽度为:定义周期矩形脉冲信号的频带宽度为: F=f0=1/ 。 TnSaT2nSaTFn23三三. 周期信号的功率周期信号的功率 周期信号的归一化平均功率周期信号的归一化平均功率 2T2T21nnn02T2T2dt)tncos(A2AT1dt) t (fT1P这是功率形式的帕斯瓦尔恒等式。这是功率形式的帕斯瓦尔恒等式。例:幅度为例:幅度为1,脉冲宽度为,脉冲宽度为0.2,周期为,周期为1的矩形脉冲的矩形脉冲信号,信号功率为信号,信号功率为 2 . 0dt111dt) t (fT1P1 . 01 . 022T2T2 1n2n201n2n20|F|2|F|A212A n2n|F|24其傅
17、里叶系数为其傅里叶系数为)n2 . 0(Sa2 . 0TnSaTFn 第一个零点为第一个零点为0.2n = ,即,即n=5。在频谱第一个零点内各分量的功率和为在频谱第一个零点内各分量的功率和为 51n2251n2n205)n2 . 0(Sa2 . 022 . 0|F|2|F|P第一个零点内分量所占总功率的比例为第一个零点内分量所占总功率的比例为 %3 .902 . 01806. 0PP5 1806. 0 25一一. 傅里叶变换傅里叶变换 由傅里叶级数的指数形式及其系数可得由傅里叶级数的指数形式及其系数可得T1TeFeF) t ( fntjnnntjnn dte ) t ( fTF2T2Ttjn
18、n 当当T时,时,d ,1/Td /2 ,n,离散频率,离散频率变成连续频率,变成连续频率,Fn为无穷小。为无穷小。上式成为上式成为 dte ) t ( fTFlim)j (FtjnT de )j (F21) t ( ftj 26常用下面符号简记:常用下面符号简记: F(j )F F f(t)F F f(t)表示对函数表示对函数f(t)取傅里叶变换,取傅里叶变换,F(j )称为称为f(t)的的频谱密度函数频谱密度函数或或频谱函数频谱函数; f(t)F F 1F(j ) F F 1F(j )表示对函数表示对函数F(j )取逆变换取逆变换 ,f(t)称为称为F(j )的的原函数原函数。对应关系简记
19、为:对应关系简记为:f(t)F(j ) 频谱函数是频谱函数是 的的复函数复函数 F(j )|F(j )|ej ( )R( )jX( )其中其中|F(j )|为幅度频谱,为幅度频谱, ( )为相位频谱。为相位频谱。27比较:实函数比较:实函数f(t),复函数,复函数F(j ),复变函数,复变函数F(s)。 傅里叶变换的三角函数形式傅里叶变换的三角函数形式 de | )j (F|21de )j (F21) t ( f)(t jtj物理意义:非周期信号含有所有连续频率分量,但其物理意义:非周期信号含有所有连续频率分量,但其幅值为无穷小,用密度代替幅度来表示。幅值为无穷小,用密度代替幅度来表示。傅里叶
20、积分由傅里叶级数推导而得,所以傅里叶积分由傅里叶级数推导而得,所以f(t)在无限区在无限区间上满足狄氏条件是傅里叶积分存在的条件。间上满足狄氏条件是傅里叶积分存在的条件。 d)(tsin| )j (F|21jd)(tcos| )j (F|21 0d)(tcos| )j (F|1|F(j )|是偶函数是偶函数该项积分为该项积分为028 一些特殊函数的傅里叶变换一些特殊函数的傅里叶变换(1) 门函数的频谱函数门函数的频谱函数门函数门函数 g (t) (t /2) (t /2) 22tjtjdte1 dte ) t (g)j (F频谱图频谱图 2Sa 22sin jee2j2j 2Sa ) t (g
21、 dt| ) t ( f |傅里叶积分存在的充分条件是傅里叶积分存在的充分条件是f(t)在无限区间上绝对可积在无限区间上绝对可积 f(t)t /21029(2) 单边指数函数的频谱函数单边指数函数的频谱函数单边指数函数单边指数函数f(t)e t (t) 0 0tjttjdtee dte ) t ( f)j (F幅度谱和相位谱幅度谱和相位谱分别为分别为 arctan)( 1| )j (F|220 j1 0 j1) t (et 0tf(t)30(3) 双边指数函数的频谱函数双边指数函数的频谱函数双边指数函数双边指数函数f1(t)e |t| 0 0tjt0tjt1dteedtee )j (F(4)
22、另一形式的双边指数函数的频谱函数另一形式的双边指数函数的频谱函数双边指数函数双边指数函数( 0) 0t ,e0t ,e) t (ftt2 0tjt0tjt2dteedtee )j (F222j1j1 222jj1j1 31(1) 冲激函数的频谱冲激函数的频谱 1 dte ) t ()t (tj F F频谱密度恒为频谱密度恒为1,称为均匀谱或白色频谱。,称为均匀谱或白色频谱。冲激函数的频谱也可由门函数推得冲激函数的频谱也可由门函数推得 ) t (g1lim) t (0 12Salim) t (g1lim)t (00 F FF F (t)1 32(2) 冲激函数导数的频谱冲激函数导数的频谱 jdt
23、) t (j) t ( dte ) t ( )t ( tjF F即即 (t)j 幅度谱幅度谱|F(j )| ,相位谱,相位谱 ( ) /2 。根据广义函数导数的定义可得根据广义函数导数的定义可得 F F (n)(t)(j )n 。(3) 单位直流信号的频谱单位直流信号的频谱单位直流信号可看作双边指数函数单位直流信号可看作双边指数函数f1(t) 当当0时的极时的极限限 )t (flim 110 F FF F 0 ,0 , 02lim220直流分量为有限值,频谱密度为无穷。直流分量为有限值,频谱密度为无穷。33 频谱函数是冲激函数,其强度为频谱函数是冲激函数,其强度为 d/12lim d2lim2
24、0220所以所以)(2 2lim)F(j220 (4) 符号函数的频谱符号函数的频谱 符号函数符号函数定义为定义为 0t 1, 0t 0, 0t 1,sgn(t)1sgn(t)t0-1 22arctanlim034sgn(t)可看作是双边指数函数可看作是双边指数函数f2(t)当当0时的极限,其时的极限,其频谱函数为频谱函数为 220202jlim)j (Flimsgn(t)F F通常表示为通常表示为 sgn(t)2/j (5) 阶跃函数的频谱阶跃函数的频谱 ) tsgn(2121) t ( j1)()t (F F 0 , 00 ,j2 0j10)(35常用函数的傅里叶变换:常用函数的傅里叶变换
25、: 2/Sa) t (g j/2) tsgn(1) t ( 0)( j1) t (et )(21 j) t ( j1)() t ( 22| t |2e36(1) 线性线性 若若 fi(t) Fi(j ) (i=1,2,n)则对任意常数则对任意常数ai (i=1,2,n),有,有 dte ) t ( f)j (Ftj 傅里叶变换对傅里叶变换对 de )j (F21f(t)tj n1iiin1iii)j (Fa)j (F) t (fa) t ( f傅立叶变换后线性性质不变。傅立叶变换后线性性质不变。37分析频谱函数的奇偶性,及其与时间函数之间的关系。分析频谱函数的奇偶性,及其与时间函数之间的关系。
展开阅读全文