2.1.6《点到直线的距离》课件(苏教必修2).ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2.1.6《点到直线的距离》课件(苏教必修2).ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 点到直线的距离 2.1 直线 距离 课件 必修
- 资源描述:
-
1、X教学目标:1. 会直接运用点到直线的距离公式进行计算2. 会根据已知的 若干点到直线的距离大小求点的坐标或直线的方程,渗透方程 思想3. 渗透由特殊到一般的思想4. 理解点到直线的距离公式的推导重点难点: 重点:点到直线的距离公式及其应用 难点:点到直线的距离公式的推导复习提问1、平面上点与直线的位置关系怎样?2、何谓点到直线的距离?答案:1.有两种,一种是点在直线上,另一种是点在直线外.2.从点作直线的垂线, 点到垂足的线段长.教学过程教学过程LL1QP(x0,y0)L:Ax+By+C=0 已知:点已知:点P(x0,y0)和直和直L:Ax+By+C=0,怎样,怎样求点求点P到直线到直线L的
2、距离呢?的距离呢?根据定义,点到直线的距离是点到直线的根据定义,点到直线的距离是点到直线的垂线段的长。垂线段的长。过点过点P作直线作直线L1L于于Q,怎么能够得到线段怎么能够得到线段PQ的长的长?利用两点间的距离公式求出利用两点间的距离公式求出|PQ|.则线段则线段PQ的长就是点的长就是点P到直线到直线L的距离的距离.解题思路:解题思路:步步 骤骤 (1)求直线求直线L1的斜率;的斜率; (2)用点斜式写出用点斜式写出L1的方程;的方程; (3)求出求出Q点的坐标点的坐标; (4)由两点间距离公式由两点间距离公式d=|PQ|. )(1ABk)(00 xxAByy),(111yxQQLL设点)(
3、)(201201yyxxd),(11yx 解解: :设设A0,B0,A0,B0,过点过点P P作作L L的垂的垂线线L L1 1, ,垂足为垂足为Q,Q, (2) )0 x1(xAB0y1y(1) 0C1By1Ax )3(111BCAxy得由LL1QP(x0,y0)L:Ax+By+C=0由点斜式得由点斜式得L L1 1的方程的方程)x-(xABy-y00一般情况一般情况 A0,B0时时 把(3)代入(2)得 设Q点的坐标为(x1,y1).又Q(x1,y1)是L1与L的交点,则)4()(220001BACByAxAxx),(11yx220001)(BACByAxByy201201)()(|yyx
4、xPQ22220022)BA()CByAX)(BA( 2200BA|CByAx| 2200BA|CByAx|d 即即2220022200)()(BACByAxBBACBYAxA把(4)代入(2)得|0ACxd|0BCyd当当AB=0(A,B不全为不全为0)(1)Ax+C=0XYO),(00yxP用公式验证结果相同用公式验证结果相同(2)By+C=0用公式验证结果相同用公式验证结果相同O),(00yxPXYOyxl:Ax+By+C=0P(x0,y0)2200BACByAxd 1.此公式的作用是求点到直线的距离;此公式的作用是求点到直线的距离;2.此公式是在此公式是在A 0 、B0的前提下推导的;
5、的前提下推导的;3.如果如果A=0或或B=0,此公式也成立;,此公式也成立;4.用此公式时直线方程要先化成一般式。用此公式时直线方程要先化成一般式。.02),1, 1(;01),3 ,2(;0),2, 1(;3774),0,0(:0134),0,2(;043),3 ,0(ypxPyxPyxPyxPyxP例例1、求下列各点到相应直线的距离、求下列各点到相应直线的距离5125965653722311.22)2 , 1(. 2的直线的方程且与原点的距离等于求过点例A 解解:设所求直线的方程为设所求直线的方程为y-2=k(x+1) 即 kx-y+2+k=0 由题意得221|200|2kkk2+8k+7
展开阅读全文