相似三角形复习PPT课件5-人教版.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《相似三角形复习PPT课件5-人教版.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 相似 三角形 复习 PPT 课件 人教版
- 资源描述:
-
1、相似三角形复习相似三角形复习初中数学一轮复习初中数学一轮复习走进图形世界走进图形世界平面图形认识(一)平面图形认识(一)平面图形的认识(二)平面图形的认识(二)图形的全等图形的全等轴对称图形轴对称图形图形与证明(一)图形与证明(一)中心对称图形(一)中心对称图形(一)中心对称图形(二)中心对称图形(二)图形的相似图形的相似图形与证明(二)图形与证明(二)几何部分知识框架几何部分知识框架(七下)(七下)(七上)(七上)(八上)(八上)(八下)(八下)(九上)(九上) 【概念解读概念解读】一、相似三角形一、相似三角形 1.1.相似三角形的定义:对应角相等,对应边成比相似三角形的定义:对应角相等,对
2、应边成比例的三角形例的三角形. . 2.2.相似三角形的判定方法:相似三角形的判定方法:(1 1)两角对应相等的两个三角形相似)两角对应相等的两个三角形相似. .(2 2)两边对应成比例且夹角相等,两个三角形)两边对应成比例且夹角相等,两个三角形相似相似. .(3 3)三边对应成比例的两个三角形相似)三边对应成比例的两个三角形相似(4 4)如果一个直角三角形的斜边和一条直角边)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似比例,那么这两个直角三角形相似. . 推论:直角三角形被斜边上的高分成
3、的两个推论:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似直角三角形和原三角形相似. . 【概念解读概念解读】3.3.相似三角形的性质相似三角形的性质(1)(1)相似三角形对应角相等,对应边成比例相似三角形对应角相等,对应边成比例. .(2)(2)相似三角形对应高的比、对应中线的比和对应相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比角平分线的比都等于相似比. .(3)(3)相似三角形周长的比等于相似比相似三角形周长的比等于相似比. . 4.4.相似多边形相似多边形: :对应角相等对应角相等, ,对应边成比例的两个多对应边成比例的两个多边形叫做相似多边形边形叫做相似多
4、边形. . 5.5.相似多边形的性质相似多边形的性质 (1)(1)相相似多边形对应角相等,对应边成比例似多边形对应角相等,对应边成比例. .(2)(2)相似多边形周长的比、对应对角线的比都等于相似多边形周长的比、对应对角线的比都等于相似比相似比. .面积的比等于相似比的平方面积的比等于相似比的平方. .l1.1.如果两个图形不仅相似如果两个图形不仅相似, ,而且每组对应顶点所而且每组对应顶点所在的直线都经过同一个点在的直线都经过同一个点, ,那么这样的两个图形那么这样的两个图形叫做叫做位似图形位似图形, ,这个点叫做这个点叫做位似中心位似中心, ,这时的相似这时的相似比又称为比又称为位似比位似
5、比. .DEFAOBCDEFAOBCl2.2.性质:性质:l位似图形上的任意一对对应点到位似中心的距位似图形上的任意一对对应点到位似中心的距离之比等于位似比离之比等于位似比. .1 1、若两个相似三角形的对应角的平分线之比是、若两个相似三角形的对应角的平分线之比是1212,则这两,则这两个三角形的对应高线之比是个三角形的对应高线之比是,对应中线之比是,对应中线之比是,周长之比是周长之比是,面积之比是,面积之比是,若两个相似三角,若两个相似三角形的面积之比是形的面积之比是1212,则这两个三角形的对应的角平分线之比,则这两个三角形的对应的角平分线之比是是,对应边上的高线之比是,对应边上的高线之比
6、是,对应边上的,对应边上的中线之比是中线之比是,周长之比是,周长之比是。2、已知两个相似三角形的周长分别为、已知两个相似三角形的周长分别为8和和6,则他们面积的,则他们面积的比是比是;3、有一张比例尺为、有一张比例尺为1:4000的地图上,一块多边形地区的的地图上,一块多边形地区的周长是周长是60cm,面积是,面积是250cm2,则这个地区的实际,则这个地区的实际周长周长m,面积是,面积是m24、有一个三角形的边长为、有一个三角形的边长为3,4,5,另一个和它相似的三,另一个和它相似的三角形的最小边长为角形的最小边长为7,则另一个三角形的周长为,则另一个三角形的周长为,面积是面积是;基础训练基
展开阅读全文