模型决策法课件(PPT35张).ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《模型决策法课件(PPT35张).ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 模型 决策 课件 PPT35
- 资源描述:
-
1、章模型决策法章模型决策法 线性规划等线性规划等时序与路径规划时序与路径规划分派问题分派问题最短路问题最短路问题最大流问题最大流问题模型决策法优化模型max (min) 目标函数目标函数 s. t. 约束条件约束条件线性规划模型的建立线性规划模型的建立实例 1 两种产品的生产。已知生产单位产品所需的设备台时及A、B两种原材料的消耗,资源限制及市场价格如下表: 资源限制设备11300台时原材料A21400千克原材料B01250千克市场价格 50100 问题:如何安排生产,才能使工厂获利最多?规划与决策规划与决策分析:(1)设 x1 生产产品的数量; x2 生产产品的数量。(2)目标函数:MAX 5
2、0 x1+100 x2 (3)约束条件:subject to (s.t.): x1+x2 300 2x1+x2 400 x2 250 x1,x2 0 规划与决策规划与决策线性规划模型: max 50 x1+100 x2 s.t. x1+x2 300 2x1+x2 400 x2 250 x1,x2 0规划与决策规划与决策线性规划模型的一般形式线性规划模型的一般形式 max c1x1+c2x2+ + cn xn s. t. a11x1 + + a1nx n (,=) b1 a21x1 + + a2nx n (,=) b2 am1x1 + + amnx n (,=) bm xij 0 i = 1,
3、,n, j =1, ,m规划与决策规划与决策线性规划应用领域线性规划应用领域: 合理利用板、线材问题; 配料问题; 投资问题; 生产计划问题、劳动力安排问题; 运输问题、电子商务配送问题; 企业决策问题;企业或商业竞争对策问题等。规划与决策规划与决策一一般线性规划建模过程般线性规划建模过程Step 1. 理解及分析实际问题,资源状况,解决问题实现的目标;Step 2. 确定决策变量(x1, ,xn) 解决问题的具体方案(量化方案);Step 3. 确定目标函数及约束条件;Step 4. 应用线性规划软件求解;Step 5. 检验所求得的解决方案是否可行:如可行,则开始具体实施;否则,转Step
4、 1 或 Step2 修改模型。规划与决策规划与决策案例2:(生产计划问题)某公司面临一个外协加工还是自行生产问题。该公司生产甲、乙、丙三种产品,这三种产品都需要经过铸造、机加工和装配三个车间。甲、乙两种产品的铸造可以外协加工,亦可以自行生产。但丙产品的铸造必须自行生产才能保证质量。有关数据见下表:规划与决策规划与决策工时与成本甲乙丙总工时每件铸造工时(小时)51078000每件机加工工时(小时)64812000每件装配工时(小时)32210000自产铸件每件成本(元)354外协铸件每件成本(元)56-机加工每件成本(元)213装配每件成本(元)322每件产品售价(元)231816问题:如何安
5、排生产计划,使公司获利最大?规划与决策规划与决策分析:设 xi 公司加工甲、乙、丙三种产品数量,i=1,2,3。x4、x5由外协铸造后再由本公司机加工和装配的甲、 乙两种产品数量;目标函数: 每件产品利润分别是:每件x1产品利润: 23-(3+2+3) =15元每件x2产品利润: 18-(5+1+2) =10元每件x3产品利润: 16-(4+3+2) =7元每件x4产品利润: 23-(5+2+3) =13元每件x5产品利润: 18-(6+1+2) =9元目标函数为: max 15 x1+10 x2+7 x3+13 x4+9 x5规划与决策规划与决策约束条件: 5 x1+10 x2+7 x3 8
6、000 6 x1+4 x2+8 x3+6 x4+4 x5 12000 3 x1+2 x2+2 x3+3 x4+2 x5 10000 xi 0 i=1,5规划与决策规划与决策图解法:Step 1. 确定可行域 D = x | x 满足上述约束条件如下图2-1:Step 2. 确定直线 50 x1+100 x2=0如下图2-2:Step 3. 向上移动直线 50 x1+100 x2=0如图2-2,z=50 x1+100 x2 的值不断地增加,达到B点时, 达到最大;Step 4. 最优解为B=(50,250), z最大=27500。规划与决策规划与决策 0 100 200 300300200100
7、D图 2-1规划与决策规划与决策 0 100 200 300300200100DB(50,250)Z= 50 x1+100 x2图 2-2时序与路径规划时序与路径规划 讨论各种时序规划问题讨论各种时序规划问题 介绍时序规划原则介绍时序规划原则 分派问题分派问题 运输问题运输问题 网络的最短路径网络的最短路径 网络的最大流网络的最大流时序规划问题时序规划问题 ABEFDC机器机器DEFCAB等待处理的一批工作按最优次序排队一台机器工作的时序规划一台机器工作的时序规划时序规划问题时序规划问题原则:原则:(1) 最紧迫的优先最紧迫的优先实例实例 1: 6种部件作为一批等待一台机器加工。每一部件的平均
8、周需求量、当前的存货水平以及加工一批所需时间如下表,你将如何安排各种部件的生产次序? 部 件 A B C D E F 平均需求量 10 4 26 34 7 3 当前存货量 72 21 48 92 28 23 加工时间 2.0 1.5 0.5 0.5 1.0 1.5时序规划问题时序规划问题 1最紧迫的优先最紧迫的优先23数据数据4项目ABCDEF5当前存货7221489228236平均需求1042634737存货用完的时间7,205,251,852,714,007,6789经整理的数据经整理的数据10存货用完的时间1,852,714,005,257,207,6711项目CDEBAF12当前存货4
9、8922821722313平均需求2634741031415生产时间0,50,51,01,52,01,516开始生产时间0,00,51,02,03,55,517完成生产时间0,51,02,03,55,57,018容余时间1,41,72,01,81,70,7时序规划问题时序规划问题 23数据数据4项目ABCDEF5当前存货7221489228236平均需求1042634737存货用完的时间7,205,251,852,714,007,6789经整理的数据经整理的数据10存货用完的时间1,852,714,005,257,207,6711项目CDEBAF12当前存货48922821722313平均需求
10、2634741031415生产时间0,50,51,01,52,01,516开始生产时间0,00,51,02,03,55,517完成生产时间0,51,02,03,55,57,018容余时间1,351,7121,751,70,67时序规划问题时序规划问题 ABCDEFGHI1加工时间最短者优先加工时间最短者优先23数据数据4工作ABCDEFGH5加工时间2538472367整理后数据整理后数据8工作AGCHEBFD9加工时间223345781011 开始加工时间0,02,04,07,010,014,019,026,012 完成加工时间2,04,07,010,014,019,026,034,0以“加
11、工时间最短者优先”为原则时序规划问题时序规划问题 23数据数据4工作ABCDEFGH5加工时间2538472367整理后数据整理后数据8工作AGCHEBFD9加工时间223345781011 开始加工时间0,02,04,07,010,014,019,026,012 完成加工时间2,04,07,010,014,019,026,034,0以“加工时间最短者优先”为原则时序规划问题时序规划问题(3) 到期日最近者原则到期日最近者原则BCDEFGHIABCDEFGH1378301420236GBCAEFDH2781314203036253247830,02,07,010,012,016,023,031
12、,02,07,010,012,016,023,031,034,00,00,02,00,02,03,01,00,0时序规划问题时序规划问题(3) 到期日最近者原则到期日最近者原则BCDEFGHIABCDEFGH1378301420236GBCAEFDH2781314203036253247830,02,07,010,012,016,023,031,02,07,010,012,016,023,031,034,00,00,02,00,02,03,01,00,0时序规划问题时序规划问题(4) 延误的工作项目最少延误的工作项目最少第1步:运用先到期者优先的原则排出工作的初始次序。如果已经没有工作被延误,
13、这便是最优解,否则,则进行第2步。第2步:在安排的时序中找到1项延误的工作。第3步:找出第2步所找工作之前(包括这一工作本身)加工时间最长的工作。第4步:将这一工作从时序安排中抽出来,并更新相应的时间。如果仍然有被延误的工作,再转向第2步,否则转向第5步。第5步:将第4步抽出的工作放到时序的末尾。实例实例 3:沿用上述实例的8项工作,求解工作延误项数最少的时序。 为此我们采用上述五个步骤。 工 作 A B C D E F G H 加工时间 2 5 3 8 4 7 2 3 到期时间 13 7 8 30 14 20 2 36时序规划问题时序规划问题第1步:将工作按到期时间排序。 工 作 G B C
展开阅读全文