必修4平面向量数量积的坐标表示、模、夹角课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《必修4平面向量数量积的坐标表示、模、夹角课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 必修 平面 向量 数量 坐标 表示 夹角 课件
- 资源描述:
-
1、2.4.2 2.4.2 平面向量平面向量数量积的坐标表示、模、夹角数量积的坐标表示、模、夹角一、复习引入.cos;0)2(cos)1(2babababaaaaaaababa;或 ( 1, 3),(1,0),.abab 练习已知求 与 的夹角二.创设教学情境我们学过两向量的和与差可以转化为它们相应的坐标我们学过两向量的和与差可以转化为它们相应的坐标来运算来运算, ,那么那么怎样用怎样用呢?的坐标表示和baba ( 1, 3),(1,1),.aba b 变式练习已知与的夹角求cos同样是已知两向量的坐标,为什么练习题中的夹角易求,而变式练习中的夹角的余弦值不易求?三、新课学习三、新课学习1 1、平
2、面向量数量积的坐标表示、平面向量数量积的坐标表示如图,如图, 是是x x轴上的单位向量,轴上的单位向量, 是是y y轴上的单位向量,轴上的单位向量,由于由于 所以所以 ijcosbabax ijy o B(x2,y2) abA(x1,y1) iijjijji . . . 1 1 0 下面研究怎样用下面研究怎样用.baba的坐标表示和设两个非零向量设两个非零向量 =(x1,y1), =(x2,y2),则则ab1122,ax iy jbx iy j112222121221121212() ()a bx iy jx iy jx x ix y i jx y i jy y jx xy y 故故两个向量的
3、数量积等于它们对应两个向量的数量积等于它们对应坐标的乘积的和。坐标的乘积的和。即即ijx o B(x2,y2) A(x1,y1) aby .2121yyxxba 根据平面向量数量积的坐标表示,向根据平面向量数量积的坐标表示,向量的量的数量积的运算数量积的运算可可转化为转化为向量的向量的坐标运坐标运算。算。;或aaaaaa2)1(221221221122222),(),2,),() 1 (yyxxAByxByxAyxayxayxa(则、(设)两点间的距离公式(;或则设向量的模2、向量的模和两点间的距离公式0baba(1)垂直)垂直0),(),21212211yyxxbayxbyxa则(设3、两向
展开阅读全文