第08讲-自动测试生成-超大规模集成电路测试技术课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《第08讲-自动测试生成-超大规模集成电路测试技术课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 08 自动 测试 生成 超大规模集成电路 技术 课件
- 资源描述:
-
1、Lecture 8 Automatic Test Pattern Generation第八讲 自动测试生成Contents内容目录1.Testability Measures / 可测试性测度2.Combinational Circuit ATPG / 组合电路ATPG3.Sequential Circuit ATPG / 时序电路ATPG4.Summary / 小结1 Testability Measures可测试性测度lNeed approximate measure of:Controllability - Difficulty of setting internal circuit l
2、ines to 0 or 1 by setting primary circuit inputsObservability - Difficulty of observing internal circuit lines by observing primary outputs1.1 Purpose目的lUses:Analysis of difficulty of testing internal circuit parts redesign or add special test hardwareGuidance for algorithms computing test patterns
3、avoid using hard-to-control linesEstimation of fault coverageEstimation of test vector length1.2 Origins起源lControl theorylRutman 1972 - First definition of controllabilitylGoldstein 1979 - SCOAPFirst definition of observabilityFirst elegant formulationFirst efficient algorithm to compute controllabi
4、lity and observabilitylParker & McCluskey 1975Definition of Probabilistic ControllabilitylBrglez 1984 - COP1st probabilistic measureslSeth, Pan & Agrawal 1985 PREDICT1st exact probabilistic measures1.3 Testability Analysis可测试性分析lInvolves Circuit Topological analysis, but no test vectors and no searc
5、h algorithm.Static analysislLinear computational complexity, Otherwise, is pointless might as well use automatic test-pattern generation and calculate:Exact fault coverageExact test vectors1.4 SCOAP measuresSCOAP测度lSCOAP Sandia Controllability and Observability Analysis ProgramlCombinational measure
6、s:CC0 Difficulty of setting circuit line to logic 0CC1 Difficulty of setting circuit line to logic 1CO Difficulty of observing a circuit linelSequential measures analogous:SC0SC1SO1.4.1 Range of SCOAP MeasuresSCOAP测度范围lControllabilities 1 (easiest) to infinity (hardest)lObservabilities 0 (easiest) t
7、o infinity (hardest)lCombinational measures:Roughly proportional to # circuit lines that must be set to control or observe given linelSequential measures:Roughly proportional to # times a flip-flop must be clocked to control or observe given lineTo observe a gate input:Observe output and make other
8、input values non-controlling1.4.3 Observability Rules (Cont.)可观察性规则To observe a fanout stem:Observe it through branch with best observability1.4.4 D Flip-Flop RulesD触发器规则Assume a synchronous RESET line.CC1 (Q) = CC1 (D) + CC1 (C) + CC0 (C) + CC0 (RESET)SC1 (Q) = SC1 (D) + SC1 (C) + SC0 (C) + SC0 (RE
9、SET) + 1CC0 (Q) = min CC1 (RESET) + CC1 (C) + CC0 (C), CC0 (D) + CC1 (C) + CC0 (C)SC0 (Q) is analogousCO (D) = CO (Q) + CC1 (C) + CC0 (C) + CC0 (RESET)SO (D) is analogous1.4.4 D Flip-Flop Rules (Cont.)D触发器规则(续)CO (RESET) = CO (Q) + CC1 (Q) + CC1 (RESET) + CC1 (C) + CC0 (C)SO (RESET) is analogousThre
10、e ways to observe the clock line:Set Q to 1 and clock in a 0 from DSet the flip-flop and then reset itReset the flip-flop and clock in a 1 from DCO (C) = min CO (Q) + CC1 (Q) + CC0 (D) + CC1 (C) + CC0 (C), CO (Q) + CC1 (Q) + CC1 (RESET) + CC1 (C) + CC0 (C), CO (Q) + CC0 (Q) + CC0 (RESET) + CC1 (D) +
11、 CC1 (C) + CC0 (C)SO (C) is analogous1.4.5 Levelization Algorithm 6.1分级算法lLabel each gate with max # of logic levels from primary inputs or with max # of logic levels from primary outputlAssign level # 0 to all primary inputs (PIs)lFor each PI fanout:Label that line with the PI level number, &Queue
12、logic gate driven by that fanoutlWhile queue is not empty:Dequeue next logic gateIf all gate inputs have level #s, label the gate with the maximum of them + 1;Else, requeue the gate1.4.6 Testability Algorithm 6.2可测试性算法1.For all PIs, CC0 = CC1 = 1 and SC0 = SC1 = 02.For all other nodes, CC0 = CC1 = S
13、C0 = SC1 = 3.Go from PIs to POS, using CC and SC equations to get controllabilities - Iterate on loops until SC stabilizes - convergence guaranteed4.For all POs, set CO = SO = 05.For all other nodes, CO = SO = 6.Work from POs to PIs, Use CO, SO, and controllabilities to get observabilities7.Fanout s
14、tem (CO, SO) = min branch (CO, SO)8.If a CC or SC (CO or SO) is , that node is uncontrollable (unobservable)8 88 88 82 Combinational Circuit ATPG 组合电路ATPGlElectron-beam (E-beam) test observes internal signals “picture” of nodes charged to 0 and 1 in different colorsToo expensivelThe ATPG problem:Giv
15、en a logical fault model, and a circuit, determine a small set of test vectors that detect all faults in the circuit.2.1 Functional vs. Structural ATPG功能和结构测试2.1.1 Compare比较lFunctional ATPG generate complete set of tests for circuit input-output combinations 129 inputs, 65 outputs: 2129 = 680,564,73
16、3,841,876,926,926,749, 214,863, 536, 422, 912 patterns Using 1 GHz ATE, would take 2.15 x 1022 yearslStructural test: No redundant adder hardware, 64 bit slices Each with 27 faults (using fault equivalence) At most 64 x 27 = 1728 faults (tests) Takes 0.000001728 s on 1 GHz ATElDesigner gives small s
17、et of functional tests augment with structural tests to boost coverage to 98+ %2.2 Algorithm Completeness算法完备性lDefinition: Algorithm is complete if it ultimately can search entire binary decision tree, as needed, to generate a testlUntestable fault no test for it even after entire tree searchedlComb
18、inational circuits only untestable faults are redundant, showing the presence of unnecessary hardware2.3 Algebras: 5-Valued and 9-Valued算法代数:5值和9值逻辑代数SymbolDD01XG0G1F0F1Meaning1/00/10/01/1X/X0/X1/XX/0X/1FailingMachine0101XXX01GoodMachine 1001X01XXRothsRothsAlgebraAlgebraMuthsMuthsAdditionsAdditions2
19、.3.1 Higher-Order Algebras高阶代数lRepresent two machines, which are simulated simultaneously by a computer program:Good circuit machine (1st value)Bad circuit machine (2nd value)lBetter to represent both in the algebra:Need only 1 pass of ATPG to solve bothGood machine values that preclude bad machine
20、values become obvious sooner & vice versalNeeded for complete ATPG:Combinational: Multi-path sensitization, Roth AlgebraSequential: Muth Algebra - good and bad machines may have different initial values due to fault2.4 Types of Algorithms 算法类型lExhaustive / 穷举算法lRandom-Pattern Generation / 随机码生成lBool
21、ean Difference Symbolic Method / 布尔差分符号方法lPath Sensitization Method / 路径敏化方法lBoolean Satisfiability / 布尔可满足性2.4.1 Exhaustive 穷举算法lFor n-input circuit, generate all 2n input patternslInfeasible, unless circuit is partitioned into cones of logic, with 15 inputsPerform exhaustive ATPG for each coneMiss
22、es faults that require specific activation patterns for multiple cones to be tested 2.4.2 Random-Pattern Generation随机码生成lFlow chart for methodlUse to get tests for 60-80% of faults, then switch to D-algorithm or other ATPG for rest2.4.3 Boolean Difference Symbolic Method布尔差分符号方法g = G (X1, X2, , Xn)
23、for the fault sitefj = Fj (g, X1, X2, , Xn) 1 j mXi = 0 or 1 for 1 i n lShannons Expansion Theorem: F (X1, X2, , Xn) = X2 F (X1, 1, , Xn) + X2 F (X1, 0, , Xn)lBoolean Difference (partial derivative): Fj glFault Detection Requirements: G (X1, X2, , Xn) = 1 Fj g2.4.3.1 Boolean Difference (Sellers, Hsi
24、ao, Bearnson)= Fj (1, X1, X2, , Xn) Fj (0, X1, , Xn)= Fj (1, X1, X2, , Xn) Fj (0, X1, , Xn) = 1 2.4.4 Path Sensitization Method路径敏化方法a.Fault Sensitization / 故障敏化b.Fault Propagation / 故障传播c.Line Justification / 线验证2.4.4.1 Circuit Example电路实例lTry path f h k L blocked at j, since there is no way to jus
25、tify the 1 on i1 10 0D DD D1 11 11 1D DD DD D2.4.4.1 Circuit Example (Cont.)电路实例(续)Try simultaneous paths f h k L and g i j k L blocked at k because D-frontier (chain of D or D) disappears1 1D DD DD DD DD D1 11 11 12.4.4.1 Circuit Example (Cont.)电路实例(续)lFinal try: path g i j k L test found!0 0D DD D
展开阅读全文