弹塑性力学(浙江大学课件).ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《弹塑性力学(浙江大学课件).ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 塑性 力学 浙江大学 课件
- 资源描述:
-
1、工程弹塑性力学工程弹塑性力学浙江大学浙江大学 建筑工程学院建筑工程学院绪论绪论0.1 课程研究对象、研究任务课程研究对象、研究任务0.2 基本假定基本假定0.3 几个基本概念几个基本概念0.4 参考书目参考书目0.1 弹塑性力学的研究对象和任务弹塑性力学的研究对象和任务弹塑性力学弹塑性力学: :研究可变形固体受到外荷载、温度研究可变形固体受到外荷载、温度变化及边界约束变动等作用时、弹变化及边界约束变动等作用时、弹塑性变形和应力状态的科学。塑性变形和应力状态的科学。固体力学的一个分支学科固体力学的一个分支学科研究对象研究对象: :对实体结构、板壳结构、杆件的进对实体结构、板壳结构、杆件的进一步分
2、析。一步分析。PPP研究方法研究方法: :材料力学、结构力学材料力学、结构力学: :简化的数学模型简化的数学模型研究任务研究任务: :弹塑性力学弹塑性力学: :较精确的数学模型较精确的数学模型建立并给出用材料力学、结构力学方建立并给出用材料力学、结构力学方法无法求解的问题的理论和方法。法无法求解的问题的理论和方法。给出初等理论可靠性与精确度的度量。给出初等理论可靠性与精确度的度量。学习目的学习目的: :确定一般工程结构的弹塑性变形与内确定一般工程结构的弹塑性变形与内力的分布规律。力的分布规律。确定一般工程结构的承载能力。确定一般工程结构的承载能力。为研究一般工程结构的强度、振动、为研究一般工程
3、结构的强度、振动、稳定性打下理论基础。稳定性打下理论基础。0.2 基本假定基本假定1).1).假定固体材料是连续介质假定固体材料是连续介质连续性假定连续性假定2).2).物体为均匀的物体为均匀的各向同性各向同性的的3).3).物体的变形属于物体的变形属于小变形小变形4).4).物体原来是处于一种物体原来是处于一种无应力无应力的自然状态的自然状态0.3 几个基本概念几个基本概念张量的概念张量的概念只需指明其大小即足以被说明的物理量,称为标量标量温度、质量、力所做的功除指明其大小还应指出其方向的物理量,称为矢量矢量物体的速度、加速度在讨论力学问题时,仅引进标量和矢量的概念是不够不够的如应力状态、应
4、变状态、惯性矩、弹性模量等张量张量关于三维空间,描述一切物理恒量的分量数目可统一地表示成: M=rn=3n标量标量:n=0,:n=0,零阶张量零阶张量矢量矢量:n=1,:n=1,一阶张量一阶张量应力应力, ,应变等应变等:n=2,:n=2,二阶张量二阶张量二阶以上的张量已不可能在三维空间有明显直观的几何意义。0.3 几个基本概念几个基本概念为了书写上的方便,在张量的记法中,都采用下标字母符号来表示和区别该张量的所有分量。这种表示张量的方法,就称为下标记号法下标记号法。123( , , )( ,(1,)2,3ix y zx x xx i 下标记号法下标记号法: :,(, ),xxxyxzyxyy
5、yzzxijzyzzi jx y z不重复出现的下标符号,在其变程N(关于三维空间N3)内分别取数1,2,3,N重复出现的下标符号称为哑标号,取其变程N内所有分量,然后再求和,也即先罗列所有各分量,然后再求和。自由标号自由标号: :哑标号哑标号: :0.3 几个基本概念几个基本概念当一个下标符号在一项中出现两次时,这个下标符号应理解为取其变程N中所有的值然后求和,这就叫做求和约定求和约定。求和约定求和约定: :1 122331122331 12 23 3( :1,2,3( :,1,2,3iiiiNiij jiiia xa xa xa xiiSlllliji j哑标,)自由下标,哑标,)d di
6、j记号记号:Kroneker-delta记号记号1001,0100,001ijijijijdd张量表示:0.3 几个基本概念几个基本概念凡是同阶的两个或两个以上的张量可以相加(减),并得到同阶的一个新张量,法则为:张量的计算张量的计算: :ijkijkijkABC1 、张量的加减第一个张量中的每一个分量乘以第二个张量中的每一个分量,从而得到一个新的分量的集合新张量,新张量的阶数等于因子张量的阶数之和。2 、张量的乘法ijklijkla bC张量导数就是把张量的每个分量都对坐标参数求导数。3 、张量函数的求导312,123ii iiuuuuuxxxx2222,yixzi jkjkjkjkjkuu
7、uuuxxxxxxxx 0.4 主要参考书目主要参考书目Foundations of Solid Mechanics1 、Y.C.Fung(冯元桢)2 、杨桂通3 、徐秉业A first course in continuum mechanics 固体力学导论固体力学导论连续介质力学导论连续介质力学导论弹塑性力学弹塑性力学应用弹塑性力学应用弹塑性力学第一章第一章 弹塑性力学基础弹塑性力学基础1.1 应力张量应力张量1.2 偏量应力张量偏量应力张量1.3 应变张量应变张量1.4 应变速率张量应变速率张量1.5 应力、应变应力、应变 Lode参数参数0limnnApA 1.1 应力张量力学的语言力
8、学的语言yxzOnnA0limsnApA C过过C点可以做无点可以做无穷多个平面穷多个平面K不同的面上的应不同的面上的应力是不同的力是不同的到底如何描绘一到底如何描绘一点处的应力状态点处的应力状态? ?1).1).一点的应力状态一点的应力状态一点的应力状态一点的应力状态yxzOyxyzyyxyzyzxzyzxyxzxxyxzxzxzyzPABCxxyxzijyxyyzzxzyz1.1 应力张量一点的应力状态一点的应力状态可由过该点的微小可由过该点的微小正平行六面体上的应力分量来确定。正平行六面体上的应力分量来确定。应力张量应力张量数学上,在坐标变换时,服从一数学上,在坐标变换时,服从一定坐标变
9、换式的九个数所定义的定坐标变换式的九个数所定义的量叫做量叫做。111213212223313233ij用张量下标记号法下标下标1、2、3表示坐标表示坐标x1、x2、x3即即x、y、z方向方向(1.1)(1.2)1.1 应力张量2).2).一点斜面上的应力一点斜面上的应力( (不计体力不计体力) )112233cos( ,)cos( ,)cos( ,)n xln xln xli :自由下标;j为求和下标(同一项中重复出现)。3111 112 213 3113221 122 223 3213331 132 233 331Nj jjNj jjNj jjSllllSllllSllll斜截面外法线斜截面
10、外法线n n的方向余弦的方向余弦: :Niij jSl令斜截面令斜截面ABCABC的面积为的面积为1 11122331 cos( ,)1 cos( ,)1 cos( ,)OBCOACOABSn xlSn xlSn xl (1.3)(1.4)1.1 应力张量斜截面斜截面OABC上的正应力上的正应力:1 12 23 322211 122 233 312 1 223 2 331 3 1222NNNNS lSlSlllll ll ll l斜截面斜截面OABC上的剪应力上的剪应力:2222123NNNNNSSS(1.5)(1.6)1.1 应力张量3).3).主应力及其不变量主应力及其不变量112233N
11、NNSlSlSl主平面主平面: :剪应力等于零的截面剪应力等于零的截面主应力主应力-: :主平面上的正应力主平面上的正应力111 112 213 3221 122 223 3331 132 233 3NNNSlllSlllSlll代入代入11112 213 321 122223 331 132 2333()0()0()0lllllllll采用张量下标记号采用张量下标记号()0iijjjldKroneker delta记号(1.7)(1.8)(1.9)1.1 应力张量d dij记号:记号:Kroneker-delta记号记号1,0,ijijijd方向余弦满足条件:方向余弦满足条件:2221231
12、lll100010001ijd采用张量表示采用张量表示1i ill 联合求解联合求解 l1,l2,l3:11112 213 321 122223 331 132 2333222123()0()0()01lllllllllllll1,l2,l3不全等于不全等于0 01112132122233132330(1.10)(1.11)(1.12)(1.13)1.1 应力张量联合求解联合求解 l1,l2,l3:行列式展开后得:行列式展开后得:1112233kkJ112233122331213213133122233211122133()()()()()()0 简化后得简化后得321230JJJ(1.14)
13、22233331111222122323313111()2iikkikkiJ 1112133212223313233ijJ(1.15)式中式中:是关于是关于的三次方程,它的三个根,即为三个主的三次方程,它的三个根,即为三个主应力,其相应的三组方向余弦对应于三组主平面。应力,其相应的三组方向余弦对应于三组主平面。主应力大小与坐标选择无关,故主应力大小与坐标选择无关,故J J1 1,J,J2 2,J,J3 3也必与坐标选择无关。也必与坐标选择无关。123,:JJJ应力不变量1.1 应力张量若坐标轴选择恰与三个主坐标重合:若坐标轴选择恰与三个主坐标重合:1123J2122331()J 3123J (
14、1.16)233112123,222主剪应力面:平分两主平面夹角的平面,数值为:主剪应力面:平分两主平面夹角的平面,数值为:(1.17)主剪应力面主剪应力面( 1 )213121311.1 应力张量最大最小剪应力:最大最小剪应力:取取主方向为坐标轴取向主方向为坐标轴取向, ,则一点处任一截面上的剪应力的计算式则一点处任一截面上的剪应力的计算式: :2222222222221231 12 23 31 12 23 3()()()()NNNNNSSSllllll2221231lll消去消去l3:2222222222213123231312323()()()()Nllll22113131232131(
15、)()()()02lll22223131232231()()()()02lll由极值条件由极值条件1200nnll及1.1 应力张量最大最小剪应力:最大最小剪应力:22113131232131()()()()02lll22223131232231()()()()02lll1200ll及12322;0;22lll 第一组解:第一组解:1200ll及第二组解:第二组解:2l消去第三组解:第三组解:13132 23232 12122 123220 ;22lll 12322;022lll 它们分别作用它们分别作用在与相应主方在与相应主方向成向成4545的斜截的斜截面上面上123max13min2 因为
16、:因为:1.1 应力张量4).4).八面体上的应力八面体上的应力 1 2 3沿主应力方向取坐标轴,与坐标轴等倾角的沿主应力方向取坐标轴,与坐标轴等倾角的八个面组成的图形,称为八个面组成的图形,称为八面体八面体。1231/3lll(1.19)八面体的法线方向余弦:八面体的法线方向余弦:八面体平面上应力在三个坐标轴上的投影分别为:八面体平面上应力在三个坐标轴上的投影分别为:123lll2221231lll八面体(每个坐标象限1个面)123arccos( )arccos( )arccos( )54 44lll或或11 1122 2233 33/3,/3,/3PlPlPl(1.20)1.1 应力张量4
17、).4).八面体上的应力八面体上的应力 1 2 3八面体面上八面体面上的正应力的正应力为为:22281 12 23 31 12 23 3123111()33PlPlPllllJ八面体面上的剪应力为:八面体面上的剪应力为:八面体(每个坐标象限1个面)22222288812312322221223311211()()3912()()()333FJJ(1.23)(1.21)八面体面上的应力矢量为:八面体面上的应力矢量为:222222281231 12 23 3222123()()()1()3FPPPlll(1.22)平均正应力平均正应力1.1 应力张量例题例题: :已知一点的应力状态由以下一组应力分
18、量所确定已知一点的应力状态由以下一组应力分量所确定, 即即 x3, y0, z0, xy1 , yz 2, zx 1, 应力单位为应力单位为MPa。试求该点的主应力值。试求该点的主应力值。 代入式(1.14)后得:解解: :11122333003J2223333111122212232331311(3 0 1 1)(0 02 2)(0 3 1 1)6J 11121332122233132333 0 01 2 1 1 2 1 1 0 12 2 3 1 1 08J 323680(4)(1)(2)0解得主应力为解得主应力为:1234;1;2; 1.2 应力偏量张量1).1).应力张量分解应力张量分解
19、物体的变形物体的变形ij(1.32)体积改变体积改变形状改变形状改变由各向相等的应力状态引起的由各向相等的应力状态引起的材料晶格间的移动引起材料晶格间的移动引起的的球应力状态球应力状态/静水压力静水压力弹性性质弹性性质塑性性质塑性性质ijdijS球形应力张量球形应力张量偏量应力张量偏量应力张量1.2 应力偏量张量1).1).应力张量分解应力张量分解000000 xxyxzijijijyxyyzzxzyzSd(1.31)球形应力张量球形应力张量偏量应力张量偏量应力张量1122331111()333kkJ其中其中:平均正应力平均正应力/静水压力静水压力1.2 应力偏量张量2).2).主偏量应力和不
20、变量主偏量应力和不变量000000 xxyxzijijijyxyyzzxzyzSd(1.31)二阶对称张量二阶对称张量1231123S其中其中:剪应力分量始剪应力分量始终没有变化终没有变化123000000 xxyxzijyxyyzzxzyzSSSSSSS主偏量应力主偏量应力2132223S3123323S(1.33)1.2 应力偏量张量ijSij例例:设原应力状态 主方向的方向余弦为l1,l2,l3,则由式(1.9)得证明:证明:ij123123123()0()0()0 xnxyxzyxynyzzxzyznlllllllll显然,方向余弦l1,l2,l3将由式(a)中的任意两式和l12+l2
21、2+l32=1所确定。(a)若设偏应力状态 主方向的方向余弦为l1,l2,l3,则由式(1.9)同样得:ijS123123123()0()0()0 xnxyxzyxynyzzxzyznSS lS lS lS lSS lS lS lS lSS l显然,方向余弦l1,l2,l3将由式(b)中的任意两式和l12+l22+l3 2=1所确定。(b)()()xnxmnmxnSS由于:()()ynymnmynSS()()znzmnmznSSl1=l1; l2=l2 ; l3= l3 可见式(a)与式(b)具有相同的系数,且已知l12+l22+l32= l12+l22+l3 2=11.2 应力偏量张量2).
22、2).主偏量应力和不变量主偏量应力和不变量11;S22;S33S(1.33)ijSij满足三次代数方程式:满足三次代数方程式:321230JJJ1112233222211222233331112233122212331230()1()122iiijijijJSSSJS SS SS SSSSSSSJS S SSS SS (1.34)式中式中J1,J2,J3为不变量为不变量(1.35)1.2 应力偏量张量(1.40)利用利用J1=0,不变量不变量J2还可写为还可写为:22222221122331223311(222)21212ijijiiJSSSSSSS SS S(1.38)22221122223
23、333112221223312222222221223311()()()66()1()1()()()()66()6xyyzzxxyyzzxJSSSSSSSSS1.2 应力偏量张量(1.43)3).3).等效应力等效应力( (应力强度应力强度) )22281223311()()()322221223311()()() 6J8223J在弹塑性力学中,为了使用方便,将 乘以系数 后,称之为等效应力等效应力83/2123,0, 故2228122331231()()()322J(1.41)简单拉伸时简单拉伸时: :“等效等效”的命名由此而来。各正应力增加或减少一个平均应力,等效应力的数值不变,这也说明等
24、效应力与球应力状态无关1.2 应力偏量张量(1.42)4).4).等效剪应力等效剪应力( (剪应力强度剪应力强度) )222212233111()()()26ijijTJS S1230,0, T 例:纯剪时,“等效等效”的命名由此而来。例题:例题:已知结构内某点的应力张量如已知结构内某点的应力张量如右式,试求该点的球形应力张量、偏右式,试求该点的球形应力张量、偏量应力张量、等效应力及主应力数值。量应力张量、等效应力及主应力数值。 100100100MPa10010ij101010 / 310 / 310 / 300010 / 30MPa0010 / 320 / 3010040 / 3:0MPa
25、10020 / 3mijS平均正应力球形应力张量量()偏量应力张1.2 应力偏量张量222222211222233331112233131()()()6()21400 400 0 6(0 0 100)70010 7 MPa2J 11122332222112222333311122331222311223312233111232213331210()( 100 100 100)00 100200|21000 1000000ijJJJ 等效应力等效应力: :1.2 应力偏量张量关于主应力的方程为关于主应力的方程为: :13223102000(20)20,0,10(10)0 2221223311()
展开阅读全文