八年级数学上册第十二章《全等三角形》PPT课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《八年级数学上册第十二章《全等三角形》PPT课件.pptx》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全等三角形 八年 级数 上册 第十二 全等 三角形 PPT 课件 下载 _其它版本_数学_初中
- 资源描述:
-
1、12.1 全等三角形第十二章 全等三角形情境引入学习目标1.理解并掌握全等三角形的概念及其基本性质.(重点)2.能找准全等三角形的对应边,理解全等三角形的对应角相等.(难点)3.能进行简单的推理和计算,并解决一些实际问题.(难点)导入新课导入新课观察与思考下列各组图形的形状与大小有什么特点?(1)(2)(3)(4)(5)讲授新课讲授新课全等图形的定义及性质一问题1:观察思考:每组中的两个图形有什么特点? 问题2:观察思考:每组中的两个图形有什么特点? 归纳总结u全等图形定义:能够完全重合的两个图形叫做全等图形.u全等形性质:如果两个图形全等,它们的形状和大小一定都相等.下面哪些图形是全等图形?
2、(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)大小、形状大小、形状完全相同完全相同EDFEDF全等三角形的定义及性质二ABC 像上图一样,把ABC叠到DEF上,能够完全重合的两个三角形,叫作全等三角形.把两个全等的三角形重叠到一起时,重合的顶点叫作对应顶点,重合的边叫作对应边,重合的角叫作对应角.你能指出上面两个全等三角形的对应顶点、对应边、对应角吗?AACBDEABDCABCDBCNMFE思考:把一个三角形平移、旋转、翻折,变换前后的两个三角形全等吗?全等三角形的对应边相等,对应角相等u全等三角形的性质一个图形经过平移、翻折、旋转后,_ 变化了,但和都没有改变
3、,即平移、翻折、旋转前后的两个图形_.形状形状大小大小全等全等位置位置 归纳总结u全等变化ABCFDEABCEDF注意:记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.u全等的表示方法“全等”用符号“”表示,读作“全等于”.例1:如图,若BODCOE,BC,指出这两个全等三角形的对应边;若ADOAEO,指出这两个三角形的对应角.典例精析解:BOD与COE的对应边为:BO与CO,OD与OE,BD与CE;ADO与AEO的对应角为:DAO与EAO,ADO与AEO,AOD与AOE.A AD DF FC CE EB B12A AB BD DC C1423E EAB BC CF F1234找
4、一找下列全等图形的对应元素?A AB BC CD DF F 请你利用自制的一对全等三角形拼出有公共顶点或公共边或公共角的图形.试用全等符号表示它们,分析每个图形,找准对应边、对应角.ABCDABCDABCD1.有公共边寻找对应边、对应角有什么规律?探究归纳1. 有公共边,则公共边为对应边;2. 有公共角(对顶角),则公共角(对顶角)为对应角;3.最大边与最大边(最小边与最小边)为对应边; 最大角与最大角(最小角与最小角)为对应角;4. 对应角的对边为对应边;对应边的对角为对应角.ABCDOABCDOABCDEABDCE2.有公共点总结归纳ABCEDFABCDEF(已知),AB=DE, AC=D
5、F,BC=EF(全等三角形对应边相等),A=D, B=E, C=F(全等三角形对应角相等). 全等三角形的对应边相等; 全等三角形的对应角相等.全等的性质ABCFDEA B=F D,A C=F E,B C=D E(全等三角形对应边相等全等三角形对应边相等)A=F,B=D,C=E(全等三角形对应角相等全等三角形对应角相等)ABCEDFu全等三角形的性质的几何语言试一试:如图,ABC与ADC全等,请用数学符号表示出这两个三角形全等,并写出相等的边和角.DCBA解:ABCADC;相等的边为:AB=AD,AC=AC,BC=DC;相等的角为:BAC=DAC,B=D,ACB=ACD.例2 如图,ABCDE
6、F,A70,B50,BF4,EF7,求DEF的度数和CF的长解:ABCDEF,A70,B50,BF4,EF7,DEFB50,BCEF7,CFBCBF743.例3 如图,EFGNMH,EF=2.1cm,EH=1.1cm,NH=3.3cm.(1)试写出两三角形的对应边、对应角;解:(1)对应边有EF和NM,FG和MH,EG和NH;对应角有E和N, F和M, EGF和NHM.(2)求线段NM及HG的长度; (3)观察图形中对应线段的数量或位置关系,试提出一个正确的结论并证明.解: EFGNMH, NM=EF=2.1cm, EG=NH=3.3cm. HG=EG EH=3.3-1.1=2.2(cm).解
7、:结论:EFNM证明: EFGNMH, E=N. EFNM.想一想:你还能得出想一想:你还能得出其他结论吗?其他结论吗?当堂练习当堂练习1.能够 的两个图形叫做全等形.两个三角形 重合时,互相 的顶点叫做对应顶点.记两个全等三角形时,通常把表示 顶点的字母写在 的位置上.重合重合重合相对应2.如图,ABC ADE,若D=B, C= AED,则DAE= ; DAB= . BAC EACABCDE3.如图,ABCBAD,如果AB=5cm, BD= 4cm,AD=6cm,那么BC的长是 ( ) A.6cm B.5cm C.4cm D.无法确定4.在上题中,CAB的对应角是 ( )A.DAB B.DB
8、A C.DBC D.CADA AO OC CD DB BAB5.如图,ABCAED,AB是ABC的最大边,AE是AED的最大边, BAC 与 EAD是对应角,且BAC=25,B= 35,AB=3cm,BC=1cm,求出E, ADE的度数和线段DE,AE 的长度.BCEDA解: ABCAED,(已知)E= B= 35,(全等三角形对应角相等)ADE=ACB=1802535 =120 , (全等三角形对应角相等)DE=BC=1cm, AE=AB=3cm.(全等三角形对应边相等)摆一摆:利用平移,翻折,旋转等变换所得到的三角形与原三角形组成各种各样新的图形,你还能拼出什么不同的造型吗?比一比看谁更有
9、创意!拼接的图形展示课堂小结课堂小结全等三 角 形定 义能够完全重合的两个三角形叫做全等三角形基本性质对应边相等对应角相等对应元素确定方法对应边对应角长对长,短对短,中对中公共边一定是对应边大角对大角,小角对小角公共角一定是对应角对顶角一定是对应角12.2三角形全等的判定第十二章 全等三角形 第1课时 “边边边”情境引入学习目标 1.探索三角形全等条件.(重点) 2.“边边边”判定方法和应用.(难点) 3.会用尺规作一个角等于已知角,了解图形的作法导入新课导入新课 为了庆祝国庆节,老师要求同学们回家制作三角形彩旗(如图),那么,老师应提供多少个数据了,能保证同学们制作出来的三角形彩旗全等呢?一
10、定要知道所有的边长和所有的角度吗?情境引入 ABCDEF1. 什么叫全等三角形?能够重合的两个三角形叫 全等三角形.3.已知ABC DEF,找出其中相等的边与角.AB=DE CA=FD BC=EF A= D B=E C= F2. 全等三角形有什么性质?全等三角形的对应边相等,对应角相等.知识回顾 如果只满足这些条件中的一部分,那么能保证ABCDEF吗?想一想:即:三条边分别相等,三个角分别相等的两个三角形全等探究活动探究活动1 1:一个条件可以吗?:一个条件可以吗?(1)有一条边相等的两个三角形不一定全等(2)有一个角相等的两个三角形不一定全等结论:有一个条件相等不能保证两个三角形全等.三角形
11、全等的判定(“边边边”定理)一6cm300有两个条件对应相等不能保证三角形全等.60o300不一定全等探究活动探究活动2 2:两个条件可以吗?:两个条件可以吗?3cm4cm不一定全等30060o3cm4cm不一定全等30o 6cm结论:(1)有两个角对应相等的两个三角形(2)有两条边对应相等的两个三角形(3)有一个角和一条边对应相等的两个三角形结论:三个内角对应相等的三角形不一定全等.(1)有三个角对应相等的两个三角形60o30030060o90o90o探究活动探究活动3 3:三个条件可以吗?:三个条件可以吗?3cm4cm6cm4cm6cm3cm6cm4cm3cm(2)三边对应相等的两个三角形
12、会全等吗? 先任意画出一个ABC,再画出一个ABC ,使AB= AB ,BC =BC, A C =AC.把画好的ABC剪下,放到ABC上,他们全等吗?ABCA BC想一想:作图的结果反映了什么规律?你能用文字语言和符号语言概括吗?作法:(1)画BC=BC;(2)分别以B,C为圆心,线段AB,AC长为半径画圆,两弧相交于点A;(3)连接线段AB,A C .u文字语言:三边对应相等的两个三角形全等. (简写为“边边边”或“SSS”)知识要点 “边边边”判定方法ABCDEF在ABC和 DEF中, ABC DEF(SSS). AB=DE, BC=EF, CA=FD,u几何语言:例1 如图,有一个三角形
13、钢架,AB =AC ,AD 是连接点A 与BC 中点D 的支架求证:(1)ABD ACD CBDA典例精析解题思路:先找隐含条件 公共边AD再找现有条件 AB=AC最后找准备条件BD=CDD是BC的中点证明: D 是BC中点, BD =DC 在ABD 与ACD 中, ABD ACD ( SSS )CBDAAB =AC (已知)BD =CD (已证)AD =AD (公共边)准备条件指明范围摆齐根据写出结论(2)BAD = CAD.由(1)得ABDACD , BAD= CAD. (全等三角形对应角相等)准备条件:证全等时要用的条件要先证好;指明范围:写出在哪两个三角形中;摆齐根据:摆出三个条件用大
14、括号括起来;写出结论:写出全等结论.u证明的书写步骤:如图, C是BF的中点,AB =DC,AC=DF.求证:ABC DCF.BCADF在ABC 和DCF中,AB = DC, ABC DCF(已知)(已证)AC = DF,BC = CF,证明:C是BF中点,BC=CF.(已知)(SSS).已知: 如图,点B、E、C、F在同一直线上 , AB = DE , AC = DF ,BE = CF .求证: (1)ABC DEF; (2)A=D.证明: ABC DEF ( SSS ).在ABC 和DEF中,AB = DE,AC = DF,BC = EF,(已知已知)(已知已知)(已证已证) BE = C
15、F, BC = EF. BE+EC = CF+CE,(1)(2) ABC DEF(已证), A=D(全等三角形对应角相等).BCAFDE EACBD解:D是BC的中点,BD=CD.在ABD与ACD中,AB=AC(已知),BD=CD(已证),AD=AD(公共边),ABDACD(SSS),例2 如图, ABC是一个钢架,AB=AC,AD是连接A与BC中点D的支架,试说明:B=C.B=C.典例精析已知:AOB求作: AOB=AOB例3 用尺规作一个角等于已知角ODBCA OCABD 用尺规作一个角等于已知角二作图总结 作法:(1)以点O 为圆心,任意长为半径画弧,分别交OA, OB 于点C、D;(2
16、)画一条射线OA,以点O为圆心,OC 长为半 径画弧,交OA于点C;(3)以点C为圆心,CD 长为半径画弧,与第2 步中 所画的弧交于点D;(4)过点D画射线OB,则AOB=AOB已知:AOB求作:AOB=AOB用尺规作一个角等于已知角依据是什么?1.如图,D、F是线段BC上的两点,AB=CE,AF=DE, 要使ABFECD ,还需要条件 _ (填一个条件即可). BF=CDAE=BDFC当堂练习当堂练习2.如图,ABCD,ADBC, 则下列结论: ABCCDB;ABCCDA;ABD CDB;BADC. 正确的个数是 ( ) A . 1个 B. 2个 C. 3个 D. 4个OABCDC=3.已
17、知:如图 ,AB=AE,AC=AD,BD=CE,求证:ABCAED.证明:BD=CE, BDCD=CECD . BC=ED .=在ABC和ADE中,AC=AD(已知),AB=AE(已知),BC=ED(已证),ABCAED(SSS).4.已知:如图 ,AC=FE,AD=FB,BC=DE.求证:(1)ABCFDE; (2) C= E.证明:(1) AD=FB, AB=FD(等式性质). 在ABC和FDE 中,AC=FE(已知),BC=DE(已知),AB=FD(已证),ABCFDE(SSS);ACEDBF=?。(2) ABCFDE(已证). C=E(全等三角形的对应角相等). DC CO OA AB
18、 B5.如图,ADBC,ACBD.求证:CD .(提示: 连结AB)证明:连结AB两点,ABDBAC(SSS)AD=BC,BD=AC,AB=BA,在ABD和BAC中,D=C.思维拓展 6.如图,ABAC,BDCD,BHCH,图中有几组全等的三角形?它们全等的条件是什么?HDCBAABDACD(SSS)AB=AC,BD=CD,AD=AD,ABHACH(SSS)AB=AC,BH=CH,AH=AH,BDHCDH(SSS)BH=CH,BD=CD,DH=DH,课堂小结课堂小结 边边边内 容有三边对应相等的两个三角形全等(简写成 “SSS”)应用思路分析书写步骤结合图形找隐含条件和现有条件,证准备条件注
19、意四步骤1. 说明两三角形全等所需的条件应按对应边的顺序书写.2. 结论中所出现的边必须在所证明的两个三角形中. 12.2三角形全等的判定第十二章 全等三角形 第第2 2课时课时 “ “边边角角边边”情境引入学习目标1探索并正确理解三角形全等的判定方法“SAS”.(重点)2会用“SAS”判定方法证明两个三角形全等及进行简单的应用(重点) 3.了解“SSA”不能作为两个三角形全等的条件(难点) 1.回顾三角形全等的判定方法1 三边对应相等的两个三角形全等(可以简写为 “边边边”或“SSS”).在ABC和 DEF中 ABC DEF(SSS)AB=DEBC=EFCA=FD2.符号语言表达:ABCDE
20、F当两个三角形满足六个条件中的3个时,有四种情况:三角三边两边一角?两角一边 除了SSS外,还有其他情况吗?讲授新课讲授新课三角形全等的判定(“边角边”定理)一问题:已知一个三角形的两条边和一个角,那么这两条边与这一个角的位置上有几种可能性呢?ABCABC“两边及夹角”“两边和其中一边的对角”它们能判定两个三角形全等吗? 尺规作图画出一个ABC,使ABAB,ACAC,AA (即使两边和它们的夹角对应相等). 把画好的ABC剪下,放到ABC上,它们全等吗?A B C 探究活动探究活动1 1:SASSAS能否判定能否判定的两个三角形全等的两个三角形全等A B C A D E B C 作法:(1)画
21、DAE=A;(2)在射线AD上截取AB=AB,在射线AE上截取AC=AC;(3)连接BC .思考: A B C 与 ABC 全等吗?如何验证?这两个三角形全等是满足哪三个条件?在ABC 和 DEF中,ABC DEF(SAS)u 文字语言:文字语言:两边和它们的夹角分别相等的两个三角形全等 (简写成“边角边”或“SAS ”)知识要点 “边角边”判定方法u几何语言:AB = DE,A =D,AC =AF ,A B C D E F 必须是两边“夹角”例1 :如果AB=CB , ABD= CBD,那么 ABD 和 CBD 全等吗?分析: ABD CBD.边:角:边: :AB=CB(已知),ABD= C
22、BD(已知),?ABCD(SAS)BD=BD(公共边).典例精析证明: 在ABD 和 CBD中,AB=CB(已知),ABD= CBD(已知), ABDCBD ( SAS).BD=BD(公共边),变式1:已知:如图,AB=CB,1= 2. 求证:(1) AD=CD; (2) DB 平分 ADC.ADBC1243在ABD与CBD中,证明:ABDCBD(SAS),AB=CB (已知),1=2 (已知),BD=BD (公共边),AD=CD,3=4,DB 平分 ADC.ABCD变式2:已知:AD=CD,DB平分ADC ,求证:A=C.12在ABD与CBD中,证明:ABDCBD(SAS),AD=CD (已
23、知),1=2 (已证),BD=BD (公共边),A=C.DB 平分 ADC,1=2.例2:如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到点D,使CDCA,连接BC并延长到点E,使CECB连接DE,那么量出DE的长就是A、B的距离,为什么?CAEDB证明:在ABC 和DEC 中,ABC DEC(SAS),),AB =DE ,(全等三角形的对应边相等).AC = DC(已知),),ACB =DCE (对顶角相等),),CB=EC(已知) , 证明线段相等或者角相等时,常常通过证明它们是全等三角形的对应边或对应角来解决.归纳已知:如图, AB=
24、DB,CB=EB,12,求证:A=D.证明: 12(已知), 1+DBC 2+ DBC(等式的性质), 即ABCDBE. 在ABC和DBE中, ABDB(已知), ABCDBE(已证), CBEB(已知), ABCDBE(SAS). A=D(全等三角形的对应角相等).1A2CBDE想一想: 如图,把一长一短的两根木棍的一端固定在一起,摆出ABC.固定住长木棍,转动短木棍,得到ABD.这个实验说明了什么?B A CDABC和ABD满足AB=AB ,AC=AD,B=B,但ABC与ABD不全等.探究活动探究活动2 2:SSA能否判定两个三角形全等几何画板:探究边边角.gsp画一画:画ABC 和DEF
25、,使B =E =30, AB =DE=5 cm ,AC =DF =3 cm 观察所得的两个三角形是否全等? ABMCDABCABD 有两边和其中一边的对角分别相等的两个三角形不一定全等.结论例3 下列条件中,不能证明ABCDEF的是()典例精析AABDE,BE,BCEFBABDE,AD,ACDFCBCEF,BE,ACDFDBCEF,CF,ACDF解析:要判断能不能使ABCDEF,应看所给出的条件是不是两边和这两边的夹角,只有选项C的条件不符合,故选C.C方法总结:判断三角形全等时,注意两边与其中一边的对角相等的两个三角形不一定全等解题时要根据已知条件的位置来考虑,只具备SSA时是不能判定三角形
展开阅读全文