中考数学专题特训第二十七讲:相似图形(含详细参考答案).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《中考数学专题特训第二十七讲:相似图形(含详细参考答案).doc》由用户(小魏子好文库)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 专题 第二 十七 相似 图形 详细 参考答案 下载 _二轮专题_中考复习_数学_初中
- 资源描述:
-
1、中考数学专题复习第二十七讲 相似图形【基础知识回顾】一、 成比例线段: 1、线段的比:如果选用同一长度的两条线段,的长度分别为m、n则这两条线段的比就是它们 的比,即:= 2、比例线段:四条线段a、b、c、d如果= 那么四条线段叫做同比例线段,简称 3、比例的基本性质:= 4、平行线分线段成比例定理:将平行线截两条直线【赵老师提醒:1、表示两条线段的比时,必须示用相同的 ,在用了相同的前提下,两条线段的比值与用的无关 即比值没有2、全分割:点C把线段AB分成两条,线段AC和BC(ACBC)如果 那么称线段AB被点C全分割AC与AB的比叫全比,即L= 】二、相似三角形: 1、定义:如果两个三角形
2、的各角对应 各边对应 那么这两个三角形相似 2、性质:相似三角形的对应角 对应边 相似三角形对应点的比、对应角平分线的比、对应 的比都等于 相似三角形周长的比等于 面积的比等于 1、 判定:基本定理:平行于三角形一边的直线和其它两边或两线相交,三角形与原三角形相似 两边对应 且夹角 的两三角形相似 两角 的两三角形相似 三组对应边的比 的两三角形相似【赵老师提醒:1、全等是相似比为 的特殊相似2、根据相似三角形的性质的特质和判定,要证四条线段的比相等相等一般要先证 判定方法中最常用的是 三组对应边成比例的两三角形相似多用在点三角形中】 三、相似多边形: 1、定义:各角对应 各边对应 的两个多边
3、形叫做相似多边形 2、性质:相似多边形对应角 对应边 相似多边形周长的比等于 面积的比等于 【赵老师提醒:相似多边形没有专门的判定方法,判定两多边形相似多用在矩形中,一般用定义进行判定】一、 位似: 1、定义:如果两个图形不仅是 而且每组对应点所在直线都经过 那么这样的两个图形叫做位似图形,这个点叫做 这时相似比又称为 2、性质:位似图形上任意一点到位似中心的距离之比都等于 【赵老师提醒:1、位似图形一定是 图形,但反之不成立,利用位似变换可以将一个图形放大或 2、在平面直角坐标系中,如果位似是以原点为位似中心,相似比位r,那么位似图形对应点的坐标的比等于 或 】【典型例题解析】考点一:比例线
4、段例1 (2012福州)如图,已知ABC,AB=AC=1,A=36,ABC的平分线BD交AC于点D,则AD的长是 ,cosA的值是 (结果保留根号)考点:黄金分割;相似三角形的判定与性质;锐角三角函数的定义分析:可以证明ABCBDC,设AD=x,根据相似三角形的对应边的比相等,即可列出方程,求得x的值;过点D作DEAB于点E,则E为AB中点,由余弦定义可求出cosA的值解答:解:ABC,AB=AC=1,A=36,ABC=ACB=72BD是ABC的平分线,ABD=DBC=ABC=36A=DBC=36,又C=CABCBDC,=, 设AD=x,则BD=BC=x则,解得:x=(舍去)或故x=如右图,过
5、点D作DEAB于点E,AD=BD,E为AB中点,即AE=AB=在RtAED中,cosA=故答案是:;点评:ABC、BCD均为黄金三角形,利用相似关系可以求出线段之间的数量关系;在求cosA时,注意构造直角三角形,从而可以利用三角函数定义求解对应训练2(2012孝感)如图,在ABC中,AB=AC,A=36,BD平分ABC交AC于点D,若AC=2,则AD的长是()A B C D考点:黄金分割分析:根据两角对应相等,判定两个三角形相似再用相似三角形对应边的比相等进行计算求出BD的长解答:解:A=DBC=36,C公共,ABCBDC,且AD=BD=BC设BD=x,则BC=x,CD=2-x由于,整理得:x
6、2+2x-4=0,解方程得:x=-1,x为正数,x=-1+故选C点评:本题考查的是相似三角形的判定与性质,先用两角对应相等判定两个三角形相似,再用相似三角形的性质对应边的比相等进行计算求出BD的长 考点二:相似三角形的性质及其应用例2 (2012重庆)已知ABCDEF,ABC的周长为3,DEF的周长为1,则ABC与DEF的面积之比为 9:1考点:相似三角形的性质专题:探究型分析:先根据相似三角形的性质求出其相似比,再根据面积的比等于相似比的平方进行解答即可解答:解:ABCDEF,ABC的周长为3,DEF的周长为1,三角形的相似比是3:1,ABC与DEF的面积之比为9:1故答案为:9:1点评:本
7、题考查的是相似三角形的性质,即相似三角形(多边形)的周长的比等于相似比;相似三角形的面积的比等于相似比的平方对应训练2(2012沈阳)已知ABCABC,相似比为3:4,ABC的周长为6,则ABC的周长为 8考点:相似三角形的性质专题:应用题分析:根据相似三角形周长的比等于相似比计算即可得解解答:解:ABCABC,ABC的周长:ABC的周长=3:4,ABC的周长为6,ABC的周长=6=8故答案为:8点评:本题主要考查了相似三角形周长的比等于相似比的性质,是基础题,熟记性质是解题的关键 考点三:相似三角形的判定方法及其应用例3 (2012徐州)如图,在正方形ABCD中,E是CD的中点,点F在BC上
8、,且FC= BC图中相似三角形共有()A1对B2对C3对D4对考点:相似三角形的判定;正方形的性质分析:首先由四边形ABCD是正方形,得出D=C=90,AD=DC=CB,又由DE=CE,FC= BC,证出ADEECF,然后根据相似三角形的对应边成比例与相似三角形的对应角相等,证明出AEFADE,则可得AEFADEECF,进而可得出结论解答:解:图中相似三角形共有3对理由如下:四边形ABCD是正方形,D=C=90,AD=DC=CB,DE=CE,FC=BC,DE:CF=AD:EC=2:1,ADEECF,AE:EF=AD:EC,DAE=CEF,AE:EF=AD:DE,即AD:AE=DE:EF,DAE
9、+AED=90,CEF+AED=90,AEF=90,D=AEF,ADEAEF,AEFADEECF,即ADEECF,ADEAEF,AEFECF故选C点评:此题考查了相似三角形的判定与性质,以及正方形的性质此题难度适中,解题的关键是证明ECFADE,在此基础上可证AEFADE例4 16(2012资阳)(1)如图(1),正方形AEGH的顶点E、H在正方形ABCD的边上,直接写出HD:GC:EB的结果(不必写计算过程);(2)将图(1)中的正方形AEGH绕点A旋转一定角度,如图(2),求HD:GC:EB;(3)把图(2)中的正方形都换成矩形,如图(3),且已知DA:AB=HA:AE=m:n,此时HD:
10、GC:EB的值与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果(不必写计算过程)考点:相似三角形的判定与性质;全等三角形的判定与性质;勾股定理;等腰直角三角形;正方形的性质分析:(1)首先连接AG,由正方形AEGH的顶点E、H在正方形ABCD的边上,易证得GAE=CAB=45,AE=AH,AB=AD,即A,G,C共线,继而可得HD=BE,GC= BE,即可求得HD:GC:EB的值;(2)连接AG、AC,由ADC和AHG都是等腰直角三角形,易证得DAHCAG与DAHBAE,利用相似三角形的对应边成比例与正方形的性质,即可求得HD:GC:EB的值;(3)由矩形AEGH的顶点E、H在
11、矩形ABCD的边上,由DA:AB=HA:AE=m:n,易证得ADCAHG,DAHCAG,ADHABE,利用相似三角形的对应边成比例与勾股定理即可求得HD:GC:EB的值解答:解:(1)连接AG,正方形AEGH的顶点E、H在正方形ABCD的边上,GAE=CAB=45,AE=AH,AB=AD,A,G,C共线,AB-AE=AD-AH,HD=BE,AG=AE,AC=AB,GC=AC-AG=AB-AE=(AB-AE)=BE,HD:GC:EB=1:1。(2)连接AG、AC,ADC和AHG都是等腰直角三角形,AD:AC=AH:AG=1:,DAC=HAG=45,DAH=CAG, DAHCAG,HD:GC=AD
12、:AC=1:, DAB=HAE=90,DAH=BAE,在DAH和BAE中,DAHBAE(SAS),HD=EB,HD:GC:EB=1:1; (3)有变化,连接AG、AC,矩形AEGH的顶点E、H在矩形ABCD的边上,DA:AB=HA:AE=m:n,ADC=AHG=90,ADCAHG,AD:AC=AH:AG=m:,DAC=HAG,DAH=CAG, DAHCAG,HD:GC=AD:AC=m:, DAB=HAE=90,DAH=BAE,DA:AB=HA:AE=m:n,ADHABE,DH:BE=AD:AB=m:n,HD:GC:EB=m:n点评:此题考查了相似三角形的判定与性质、正方形的性质、矩形的性质、全
13、等三角形的判定与性质以及勾股定理等知识此题综合性较强,难度较大,注意掌握辅助线的作法,注意数形结合思想的应用对应训练3. (2012攀枝花)如图,ABCADE且ABC=ADE,ACB=AED,BC、DE交于点O则下列四个结论中,1=2;BC=DE;ABDACE;A、O、C、E四点在同一个圆上,一定成立的有()A1个B2个C3个D4个考点:相似三角形的判定;全等三角形的性质;圆周角定理分析:由ABCADE且ABC=ADE,ACB=AED,根据全等三角形的性质,即可求得BC=DE,BAC=DAE,继而可得1=2,则可判定正确;由ABCADE,可得AB=AD,AC=AE,则可得AB:AC=AD:AE
14、,根据有两边对应成比例且夹角相等三角形相似,即可判定正确;易证得AEFDCF与AOFCEF,继而可得OAC+OCE=180,即可判定A、O、C、E四点在同一个圆上解答:解:ABCADE且ABC=ADE,ACB=AED,BAC=DAE,BC=DE,故正确;BAC-DAC=DAE-DAC,即1=2,故正确;ABCADE,AB=AD,AC=AE,1=2,ABDACE,故正确;ACB=AEF,AFE=OFC,AFEOFC,2=FOC,即,AFO=EFC,AFOEFC,FAO=FEC,EAO+ECO=2+FAO+ECO=FOC+FEC+ECO=180,A、O、C、E四点在同一个圆上,故正确故选D点评:此
15、题考查了相似三角形的判定与性质、全等三角形的性质以及四点共圆的知识此题难度较大,注意数形结合思想的应用,注意找到相似三角形是解此题的关键4. (2012义乌市)在锐角ABC中,AB=4,BC=5,ACB=45,将ABC绕点B按逆时针方向旋转,得到A1BC1(1)如图1,当点C1在线段CA的延长线上时,求CC1A1的度数;(2)如图2,连接AA1,CC1若ABA1的面积为4,求CBC1的面积;(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值考点:相似三角形的判定与性质;全等三角形的判定与性质;旋
16、转的性质专题:几何综合题分析:(1)由由旋转的性质可得:A1C1B=ACB=45,BC=BC1,又由等腰三角形的性质,即可求得CC1A1的度数;(2)由ABCA1BC1,易证得ABA1CBC1,然后利用相似三角形的面积比等于相似比的平方,即可求得CBC1的面积;(3)由当P在AC上运动至垂足点D,ABC绕点B旋转,使点P的对应点P1在线段AB上时,EP1最小,当P在AC上运动至点C,ABC绕点B旋转,使点P的对应点P1在线段AB的延长线上时,EP1最大,即可求得线段EP1长度的最大值与最小值解答:解:(1)由旋转的性质可得:A1C1B=ACB=45,BC=BC1,CC1B=C1CB=45,.(
17、2分)CC1A1=CC1B+A1C1B=45+45=90(2)ABCA1BC1,BA=BA1,BC=BC1,ABC=A1BC1,ABC+ABC1=A1BC1+ABC1,ABA1=CBC1,ABA1CBC1 ,SABA1=4,SCBC1=; (3)如图1,过点B作BDAC,D为垂足,ABC为锐角三角形,点D在线段AC上,在RtBCD中,BD=BCsin45=, 当P在AC上运动与AB垂直的时候,ABC绕点B旋转,使点P的对应点P1在线段AB上时,EP1最小,最小值为:EP1=BP1-BE=BD-BE=-2; 当P在AC上运动至点C,ABC绕点B旋转,使点P的对应点P1在线段AB的延长线上时,EP
18、1最大,最大值为:EP1=BC+BE=2+5=7点评:此题考查了旋转的性质、相似三角形的判定与性质、全等三角形的判定与性质以及三角函数的应用此题难度较大,注意数形结合思想的应用,注意旋转前后的对应关系考点四:位似例5 (2012玉林)如图,正方形ABCD的两边BC,AB分别在平面直角坐标系的x轴、y轴的正半轴上,正方形ABCD与正方形ABCD是以AC的中点O为中心的位似图形,已知AC=3,若点A的坐标为(1,2),则正方形ABCD与正方形ABCD的相似比是()A B C D 考点:位似变换;坐标与图形性质分析:延长AB交BC于点E,根据大正方形的对角线长求得其边长,然后求得小正方形的边长后即可
19、求两个正方形的相似比解答:解:在正方形ABCD中,AC=3BC=AB=3,延长AB交BC于点E,点A的坐标为(1,2),OE=1,EC=AE=3-1=2,正方形ABCD的边长为1,正方形ABCD与正方形ABCD的相似比是故选B点评:本题考查了位似变换和坐标与图形的变化的知识,解题的关键是根据已知条件求得两个正方形的边长对应训练5(2012咸宁)如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:,点A的坐标为(1,0),则E点的坐标为()A(,0) B( C D 考点:位似变换;坐标与图形性质分析:由题意可得OA:OD=1:,又由点A的坐标为(1,0),即可求得OD的长,
20、又由正方形的性质,即可求得E点的坐标解答:解:正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:,OA:OD=1:,点A的坐标为(1,0),即OA=1,OD=,四边形ODEF是正方形,DE=OD=E点的坐标为:(,)故选C点评:此题考查了位似变换的性质与正方形的性质此题比较简单,注意理解位似变换与相似比的定义是解此题的关键【聚焦山东中考】1(2012潍坊)已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将ABE向上折叠,使B点落在AD上的F点,若四边形EFDC与矩形ABCD相似,则AD=()ABCD2考点:相似多边形的性质;翻折变换(折叠问题)分析:可设AD=x,根据四
展开阅读全文