中考数学专题特训第二十六讲:平移旋转与对称(含详细参考答案).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《中考数学专题特训第二十六讲:平移旋转与对称(含详细参考答案).doc》由用户(小魏子好文库)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 专题 第二 十六 平移 旋转 对称 详细 参考答案 下载 _二轮专题_中考复习_数学_初中
- 资源描述:
-
1、中考数学专题复习第二十六讲 平移、旋转与对称【基础知识回顾】一、 轴对称与轴对称图形: 1、轴对称:把一个图 形沿着某一条直线翻折过去,如果它能够与另一个图形 那么就这说两个图形成轴对称,这条直线叫 2、轴对称图形:如果把一个图形沿着某条直线对折,直线两旁的部分能够互相 那么这个图形叫做轴对称图形3、轴对称性质:关于某条直线对称的两个图形 对应点连接被对称轴 【赵老师提醒:1、轴对称是指 个图形的位置关系,而轴对称图形是指 各具有特殊形状的图形2、对称轴是 而不是线段,轴对称图形的对称轴不一定只有一条】二、图形的平移与旋转: 1、平移:定义:在平面内,把某个图形沿着某个 移动一定的 这样的图形
2、运动称为平移性质:平移不改变图形的 与 ,即平移前后的图形 平移前后的图形对应点连得线段平行且 【赵老师提醒:平移作图的关键是确定平移的 和 】2、旋转:定义:在平面内,将一个图形绕一个定点沿某个方向旋转一个 ,这样的图形运动称为旋转,这个点称为 转动的 称为旋转角旋转的性质:旋转前后的图形 :旋转前后的两个圆形中,对应点到旋转中心的距离都 ,每对对应点与旋转中心的连线所成的角度都是旋转角旋转角都 【赵老师提醒:1、旋转作用的关键是确定 、 和 ,2、一个图形旋转一定角度后如果能与自身重合,那么这个图形就是旋转对称图形】三、中心对称与中心对称图形:1、中心对称:在平面内,一个图形绕某一点旋转1
3、800能与自身重合它能与另一个图形 就说这两个图形关于这个点成中心对称,这个点叫做 2、中心对称图形:一个图形绕着某点旋转 后能与自身重合,这种图形叫中心对称图形,这个点叫做 3、性质:在中心对称的两个图形中,对称点的连线都经过 且被 平分【赵老师提醒:1、中心对称是指一个图形的位置关系,而中心对称图形是指一个具有特殊形状的图形2、常见的轴对称图形有 、 、 、 、 、 等,常见的中心对称图形有 、 、 、 、 、 等3、所有的正n边形都是 对称圆形里有四条对称轴,边数为偶数的正多边形,又是 对称图形4、注意圆形的各种变换在平面直角坐标系中的运用】【典型例题解析】 考点一:轴对称图形例1 (2
4、012柳州)娜娜有一个问题请教你,下列图形中对称轴只有两条的是()AB CD圆 等边三角形 矩形 等腰梯形考点:轴对称图形分析:根据轴对称图形的概念,分别判断出四个图形的对称轴的条数即可解答:解:A、圆有无数条对称轴,故本选项错误;B、等边三角形有3条对称轴,故本选项错误;C、矩形有2条对称轴,故本选项正确;D、等腰梯形有1条对称轴,故本选项错误故选C点评:本题考查轴对称图形的概念,解题关键是能够根据轴对称图形的概念正确找出各个图形的对称轴的条数,属于基础题例2 (2012成都)如图,在平面直角坐标系xOy中,点P(-3,5)关于y轴的对称点的坐标为()A(-3,-5)B(3,5)C(3-5)
5、D(5,-3)考点:关于x轴、y轴对称的点的坐标分析:根据关于y轴对称的点,纵坐标相同,横坐标互为相反数解答解答:解:点P(-3,5)关于y轴的对称点的坐标为(3,5)故选B点评:本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数对应训练1. (2012宁波)下列交通标志图案是轴对称图形的是()ABCD考点:轴对称图形专题:常规题型分析:根据轴对称图形的概念对各选项分析判断后利用排除法求解解答:解:A、不是轴
6、对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误故选B点评:本题考查了轴对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合2(2012沈阳)在平面直角坐标系中,点P(-1,2)关于x轴的对称点的坐标为()A(-1,-2)B(1,-2)C(2,-1)D(-2,1)考点:关于x轴、y轴对称的点的坐标分析:根据关于x轴对称的点,横坐标相同,纵坐标互为相反数解答解答:解:点P(-1,2)关于x轴的对称点的坐标为(-1,-2)故选A点评:本题考查了关于x轴、y轴对称的点的坐标
7、,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数考点二:最短路线问题例3 (2012黔西南州)如图,抛物线y= x2+bx-2与x轴交于A、B两点,与y交于C点,且A(-1,0),点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,m的值是()ABCD考点:轴对称-最短路线问题;二次函数的性质;相似三角形的判定与性质分析:首先可求得二次函数的顶点坐标,再求得C关于x轴的对称点C,求得直线CD的解析式,与x轴的交点的横坐标即是m的值解答:解
8、:点A(-1,0)在抛物线y=x2+bx-2上,(-1)2+b(-1)-2=0,b=-,抛物线的解析式为y=x2-x-2,顶点D的坐标为(,-),作出点C关于x轴的对称点C,则C(0,2),OC=2连接CD交x轴于点M,根据轴对称性及两点之间线段最短可知,MC+MD的值最小设抛物线的对称轴交x轴于点EEDy轴,OCM=EDM,COM=DEMCOMDEM,即,m=故选B点评:本题着重考查了待定系数法求二次函数解析式,轴对称性质以及相似三角形的性质,关键在于求出函数表达式,作出辅助线,找对相似三角形对应训练3. (2012贵港)如图,MN为O的直径,A、B是O上的两点,过A作ACMN于点C,过B作
9、BDMN于点D,P为DC上的任意一点,若MN=20,AC=8,BD=6,则PA+PB的最小值是 考点:轴对称-最短路线问题;勾股定理;垂径定理专题:探究型分析:先由MN=20求出O的半径,再连接OA、OB,由勾股定理得出OD、OC的长,作点B关于MN的对称点B,连接AB,则AB即为PA+PB的最小值,BD=BD=6,过点B作AC的垂线,交AC的延长线于点E,在RtABE中利用勾股定理即可求出AB的值解答:解:MN=20,O的半径=10,连接OA、OB,在RtOBD中,OB=10,BD=6,OD=8;同理,在RtAOC中,OA=10,AC=8,OC=6,CD=8+6=14,作点B关于MN的对称点
10、B,连接AB,则AB即为PA+PB的最小值,BD=BD=6,过点B作AC的垂线,交AC的延长线于点E,在RtABE中,AE=AC+CE=8+6=14,BE=CD=14,AB=故答案为:点评:本题考查的是轴对称-最短路线问题、垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键考点二:中心对称图形例4 (2012襄阳)下列图形中,是中心对称图形,但不是轴对称图形的是()ABCD考点:中心对称图形;轴对称图形分析:依据轴对称图形与中心对称的概念即可解答解答:解:B选项是轴对称也是中心对称图形,C、D选项是轴对称但不是中心对称图形,A选项只是中心对称图形但不是轴
11、对称图形故选A点评:对轴对称与中心对称概念的考查:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴如果一个图形绕某一点旋转180后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心对应训练4(2012株洲)下列图形中,既是轴对称图形又是中心对称图形的是()ABCD考点:中心对称图形;轴对称图形分析:根据中心对称图形的定义旋转180后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案解答:解:A、此图形不是中心对称图
12、形,是轴对称图形,故此选项错误;B、此图形不是中心对称图形,也不是轴对称图形,故此选项错误;C、此图形是中心对称图形,也是轴对称图形,故此选项正确;D、此图形是中心对称图形,不是轴对称图形,故此选项错误故选C点评:此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴 考点二:平移旋转的性质例5 (2012义乌市)如图,将周长为8的ABC沿BC方向平移1个单位得到DEF,则四边形ABFD的周长为()A6B8C10D12考点:平移的性质分析:根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案解答:解:根据题意,将周长为8
13、个单位的等边ABC沿边BC向右平移1个单位得到DEF,AD=1,BF=BC+CF=BC+1,DF=AC;又AB+BC+AC=8,四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10故选;C点评:本题考查平移的基本性质:平移不改变图形的形状和大小;经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等得到CF=AD,DF=AC是解题的关键例6 (2012十堰)如图,O是正ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60得到线段BO,下列结论:BOA可以由BOC绕点B逆时针旋转60得到;点O与O的距离为4;AOB=150;S
14、四边形AOBO=6+3;SAOC+SAOB=6+其中正确的结论是()ABCD考点:旋转的性质;全等三角形的判定与性质;等边三角形的判定与性质;勾股定理的逆定理分析:证明BOABOC,又OBO=60,所以BOA可以由BOC绕点B逆时针旋转60得到,故结论正确;由OBO是等边三角形,可知结论正确;在AOO中,三边长为3,4,5,这是一组勾股数,故AOO是直角三角形;进而求得AOB=150,故结论正确;S四边形AOBO=SAOO+SOBO=6+4,故结论错误;如图,将AOB绕点A逆时针旋转60,使得AB与AC重合,点O旋转至O点利用旋转变换构造等边三角形与直角三角形,将SAOC+SAOB转化为SCO
15、O+SAOO,计算可得结论正确解答:解:由题意可知,1+2=3+2=60,1=3,又OB=OB,AB=BC,BOABOC,又OBO=60,BOA可以由BOC绕点B逆时针旋转60得到,故结论正确;如图,连接OO,OB=OB,且OBO=60,OBO是等边三角形,OO=OB=4故结论正确;BOABOC,OA=5在AOO中,三边长为3,4,5,这是一组勾股数,AOO是直角三角形,AOO=90,AOB=AOO+BOO=90+60=150,故结论正确;S四边形AOBO=SAOO+SOBO=34+42=6+4,故结论错误;如图所示,将AOB绕点A逆时针旋转60,使得AB与AC重合,点O旋转至O点易知AOO是
16、边长为3的等边三角形,COO是边长为3、4、5的直角三角形,则SAOC+SAOB=S四边形AOCO=SCOO+SAOO=34+32=6+,故结论正确综上所述,正确的结论为:故选A点评:本题考查了旋转变换中等边三角形,直角三角形的性质利用勾股定理的逆定理,判定勾股数3、4、5所构成的三角形是直角三角形,这是本题的要点在判定结论时,将AOB向不同方向旋转,体现了结论-结论解题思路的拓展应用对应训练5.(2012莆田)如图,ABC是由ABC沿射线AC方向平移2cm得到,若AC=3cm,则AC= 1cm考点:平移的性质分析:先根据平移的性质得出AA=2cm,再利用AC=3cm,即可求出AC的长解答:解
17、:将ABC沿射线AC方向平移2cm得到ABC,AA=2cm,又AC=3cm,AC=AC-AA=1cm故答案为:1点评:本题主要考查对平移的性质的理解和掌握,能熟练地运用平移的性质进行推理是解此题的关键6(2012南通)如图RtABC中,ACB=90,B=30,AC=1,且AC在直线l上,将ABC绕点A顺时针旋转到,可得到点P1,此时AP1=2;将位置的三角形绕点P1顺时针旋转到位置,可得到点P2,此时AP2=2+ ;将位置的三角形绕点P2顺时针旋转到位置,可得到点P3,此时AP3=3+ ;按此规律继续旋转,直到点P2012为止,则AP2012等于()A2011+671B2012+671C201
18、3+671D2014+671考点:旋转的性质专题:规律型分析:仔细审题,发现将RtABC绕点A顺时针旋转,每旋转一次,AP的长度依次增加2,1,且三次一循环,按此规律即可求解解答:解:RtABC中,ACB=90,B=30,AC=1,AB=2,BC=,将ABC绕点A顺时针旋转到,可得到点P1,此时AP1=2;将位置的三角形绕点P1顺时针旋转到位置,可得到点P2,此时AP2=2+;将位置的三角形绕点P2顺时针旋转到位置,可得到点P3,此时AP3=2+1=3+;又20123=6702,AP2012=670(3+)+2+=2012+671故选B点评:本题考查了旋转的性质及直角三角形的性质,得到AP的长
19、度依次增加2,1,且三次一循环是解题的关键 考点四:图形的折叠例7 (2012遵义)如图,矩形ABCD中,E是AD的中点,将ABE沿BE折叠后得到GBE,延长BG交CD于F点,若CF=1,FD=2,则BC的长为()A 3B2C2D2考点:翻折变换(折叠问题)。810360 分析:首先过点E作EMBC于M,交BF于N,易证得ENGBNM(AAS),MN是BCF的中位线,根据全等三角形的性质,即可求得GN=MN,由折叠的性质,可得BG=3,继而求得BF的值,又由勾股定理,即可求得BC的长解答:解:过点E作EMBC于M,交BF于N,四边形ABCD是矩形,A=ABC=90,AD=BC,EMB=90,四
20、边形ABME是矩形,AE=BM,由折叠的性质得:AE=GE,EGN=A=90,EG=BM,ENG=BNM,ENGBNM(AAS),NG=NM,CM=DE,E是AD的中点,AE=ED=BM=CM,EMCD,BN:NF=BM:CM,BN=NF,NM=CF=,NG=,BG=AB=CD=CF+DF=3,BN=BGNG=3=,BF=2BN=5,BC=2故选B点评:此题考查了矩形的判定与性质、折叠的性质、三角形中位线的性质以及全等三角形的判定与性质此题难度适中,注意辅助线的作法,注意数形结合思想的应用例8 (2012天津)已知一个矩形纸片OACB,将该纸片放置在平面直角坐标洗中,点A(11,0),点B(0
展开阅读全文