2016上半年辽宁教师资格高中数学学科知识与教学能力真题及答案.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2016上半年辽宁教师资格高中数学学科知识与教学能力真题及答案.doc》由用户(雁南飞1234)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 考试试题及答案
- 资源描述:
-
1、2016上半年辽宁教师资格高中数学学科知识与教学能力真题及答案一、单项选择题(本大题共8小题,每小题5分,共40分)1. 参考答案:A 2.下列级数中,不收敛的是( )。参考答案:C 3.方程 所确定的二次曲面是( )。A椭球面B旋转双曲面C旋转抛物面D圆柱面参考答案:B参考解析: 4若函数(x)在0,1上黎曼可积,则(x)在0,1上( )。A连续B单调C可导D有界参考答案:D参考解析:根据黎曼可积定义,即黎曼可积必有界。5. A0B1C2D3参考答案:D参考解析: 6.二次型 是( )。A正定的B负定的C不定的D以上都不是参考答案:C参考解析: 故选C。7.普通高中数学课程标准(实验)的课程
2、目标提出培养数学基本能力,对于用几何方法证明“直线与平面平行的性质定理”的学习有助于培养的数学基本能力有( )。A推理论证、运算求解、数据处理B空间想象、推理论证、抽象概括C推理论证、数据处理、空间想象D数据处理、空间想象、抽象概括参考答案:B参考解析:“直线与平面平行的性质定理”的学习过程中对数据处理的能力提升没有很明显的作用,因此选择B。8.创新意识的培养是现代数学教育的基本任务,应体现在数学教与学的过程之中,下面的表述中不适合在教学中培养学生创新意识的是( )。A发现和提出问题B寻求解决问题的不同策略C规范数学书写D探索结论的新应用参考答案:C参考解析:创新意识是现代数学教育的基本任务,
3、应体现在数学教与学的过程之中。学生自己发现和提出问题是创新的基础;独立思考、学会思考是创新的核心;归纳概括得到猜想和规律,并加以验证,是创新的重要方法。二、简答题(本大题共5小题,每题7分,共35分)9. 参考解析:10.设球面方程为(x-1)2+(y-1)2+(z-1)2=169。求它在点(4,5,13)处的切平面方程。参考解析:因为球面方程为(x-1)2+(y-1)2+(z-1)2=169,故可设F(x,y,z)=(x-1)2+(y-1)2+(z-1)2-169,有Fx(x,y,x)=2(x-1),Fy(x,y,z)=2(y-1),Fz(x,y,z)=2(z-1),所以Fx(4,5,13)
4、=2(4-1)=6,Fy(4,5,13)=2(5-1)=8,Fz(4,5,13)=2(13-1)=24,所以在点(4,5,13)处,n=(6,8,24)是法线的一个方向向量。由此可得球面在点(4,5,13)处的切平面方程为6(x-4)+8(y-5)+24(z-13)=0,化简得:3(x-4)+4(y-5)+12(z-13)=0。11.在体育活动中,甲乙两人掷一枚六面分别标有1,2,3,4,5,6的质地均匀的骰子。如果结果为奇数,则甲跑一圈;若结果为1或2,则乙跑一圈,请回答甲跑一圈和乙跑一圈这两个事件是否独立,并说明理由。参考解析:12.普通高中数学课程标准(实验)描述“知识与技能”领域目标的
5、行为动词有“了解”“理解”“掌握”“运用”,请以“等差数列”概念为例,说明“理解”的基本含义。参考解析:行为动词中的“理解”就是把握内在逻辑联系,对知识作出解释、扩展、提供证据、判断等。以“等差数列的概念”为例,教学目标中理解等差数列的概念;探索并掌握等差数列的通项公式;能在具体的问题情境中,发现数列的等差关系并能用有关知识解决相应的问题;体会等差数列与一次函数的关系。这些都属于“理解”的目标层次。学生在学习过程中,能够把握等差数列的概念,通过内在逻辑联系以此为前提进行推导,探索并总结等差数列的通项公式,同时能够对日常所见的等差数列问题作出解释、解决相应的问题,并能够拓展到等差数列与一次函数之
6、间的关系。13.以“余弦定理”教学为例,简述数学定理教学的主要环节。参考解析:教学过程:(1)创设情境,提出问题问题:以千岛湖求两岛间的距离引入,已知两岛分别与第三座岛的距离及夹角如何求这两岛间的距离。老师活动:以上问题能否用正弦定理来解决,请同学们尝试一下,如果解决不了,思考它是已知三角形两边及夹角,求第三边的问题。能否也象正弦定理那样,寻找它们之间的某种定量关系?(2)求异探新,证明定理问题1:这是一个已知三角形两边n和b及两边的夹角C,求出第三边c的问题。我们知道已知三角形两边分别为a和b,这两边的夹角为G,角C满足什么条件时较易求出第三边c?(由勾股定理导入)问题2:自学提纲学生活动:
7、小组合作探究,完成填空。=a2-_+b2所以c2=a2+b2_,当C=90时,上式变为_。类似地可以证明b2= _ ,a2=_。老师活动:引导学生从特殊人手,用已有的初中所学的平面几何的有关知识来研究这一问题,从而寻找出这些量之间存在的某种定量关系。得出结论,上式就是余弦定理。师生强调:碍出了余弦定理,还应引导学生联想、类比、转化,思考是否还有其他方法证明余弦定理。问题3:让学生观察以下各式的结构有什么特征?能用语言描述吗?a2=b2+c2-26ccosAb2=a2+c2-2accosBc2=b2+a2-2bacosC师生共同总结:余弦定理的内容是三角形任何一边的平方等于其他两边的平方和减去这
8、两边与它们夹角的余弦的积的两倍。(3)巩固新知,运用练习询问学生这节课的收获,能否学以致用。请小组继续自学教材上的两个例题。比一比,赛一赛。看哪一个小组先发现这两个生活实际问题的解决能否用今天学的余弦定理?如何解决?(4)运用定理,解决问题让学生观察余弦定理及推论的构成形式,思考用余弦定理及推论可以解决那些类型的三角形问题。定理学习的一般环节:(1)了解定理的内容,能够解决什么问题(创设情境,提出问题中体现);(2)理解定理的含义,认识定理的条件和结论,如在公式推导过程中对条件引起注意,通过对结论从结构,功能,性质,使用步骤等角度分析以加深印象和理解(求异探新,证明定理中体现);(3)定理的证
展开阅读全文