第十四章-整式的乘法与因式分解-复习课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《第十四章-整式的乘法与因式分解-复习课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第十四 整式 乘法 因式分解 复习 课件
- 资源描述:
-
1、 1、同底数幂相除同底数幂相除 2、单项式除以单项式、单项式除以单项式 3、多项式除以单项式、多项式除以单项式(二)整式的除法(二)整式的除法你回忆起了吗?就这些你回忆起了吗?就这些知识知识 1、同底数幂的乘法、同底数幂的乘法 2、幂的乘方、幂的乘方 3、积的乘方、积的乘方 4、单项式乘以单项式、单项式乘以单项式 5、单项式乘以多项式、单项式乘以多项式 6、多项式乘以多项式、多项式乘以多项式 7、平方差公式、平方差公式 8、完全平方公式、完全平方公式(一)整式的乘法(一)整式的乘法1、同底数幂的乘法、同底数幂的乘法法则:法则:同底数幂相乘,底数不变,指数相加。同底数幂相乘,底数不变,指数相加。
2、数学符号表示:数学符号表示:(其中(其中m、n为正整数)为正整数)nmnmaaa(二)整式的乘法(二)整式的乘法练习:判断下列各式是否正确。练习:判断下列各式是否正确。6623222844333)()()()(2,2xxxxxmmmbbbaaa2、幂的乘方、幂的乘方法则:法则:幂的乘方,底数不变,指数相乘。幂的乘方,底数不变,指数相乘。数学符号表示:数学符号表示:mnnmaa)((其中(其中m、n为正整数)为正整数)练习:判断下列各式是否正确。练习:判断下列各式是否正确。2244241222443243284444)()()( ,)()(,)(mmmnnaaaxxbbbaaamnppnmaa)
3、((其中(其中m、n、P为正整数)为正整数)3、积的乘方、积的乘方法则:法则:积的乘方,等于把积的每一个因式分别乘方,积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。再把所得的幂相乘。符号表示:符号表示:)()(),( ,)(为正整数其中为正整数其中ncbaabcnbaabnnnnnnn练习:计算下列各式。练习:计算下列各式。32332324)( ,)2( ,)21( ,)2(baxybaxyz口答练习口答练习x3x2=( )a62+a43( )=x x2( )3=x3x2002=71( )199771998(1)(3)-abc( ) (-ab)2=(6)(5)(4)(2)x52a1
4、2x7x19997-a3b3c24.单项式与单项式相乘的法则:单项式与单项式相乘的法则: 单项式与单项式相乘,把它们单项式与单项式相乘,把它们的的系数、相同字母系数、相同字母分别相乘,对于分别相乘,对于只在一个单项式里含有的字母,则只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。连同它的指数作为积的一个因式。 法则:法则: 多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.(a+b)( m+n)=am+an+bm+bn5 .多项式与多项式相乘:多项式与多项式相乘:=am+an+bm+bn(1)、平方差公式)、平方差公式即两个数的和与这两个数的差的积
5、,等于这两个即两个数的和与这两个数的差的积,等于这两个数的平方差。这个公式叫(乘法的)平方差公式数的平方差。这个公式叫(乘法的)平方差公式.,)(22也可以是代数式既可以是数其中babababa说明说明:平方差公式是根据多项式乘以多:平方差公式是根据多项式乘以多项式得到的,它是项式得到的,它是两个数的和两个数的和与与同样的同样的两个数两个数的差的差的积的形式。的积的形式。(三)(三).乘法公式:乘法公式:一般的,我们有:一般的,我们有:(2)、完全平方公式)、完全平方公式法则法则:两数和(或差)的平方,等于它们的:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的平方和,加上(或
6、减去)它们的积的2倍倍。.,2)(;2)(222222也可以是代数式既可以是数其中 bababababababa2222)( :bababa即一般的,我们有:一般的,我们有:(三)乘法公式(三)乘法公式平方差公式平方差公式完全平方公式完全平方公式(a+b)(a-b) =a2b2-(a+b)2=a2b22ab+二次三项型乘法公式二次三项型乘法公式(x+p)(x+q)=x +(p+q)x+pq2注意:注意: (1)(a-b)=-(b-a) (2 )(a-b)2=(b-a)2 (3) (-a-b)2=(a+b)2 (4) (a-b)3=-(b-a)3口答练习口答练习一一(x-2y)( )=x2-4y
7、2(1)( )x21y-( )=x2-xy+41y2(2)x+2yx-21y(3)如果如果a+a1=3,则则a2+a21=( )(A) 7(B) 9(C) 10(D) 11所以所以=9a+a1( )2所以所以a +a1=922+2A故故a a1=72+2因为因为a+a1=3解:解:分别为分别为( )(4) 若若2a2-2ab+b2-2a+1=0,则则a、b(A)1,-1(B)1,1(C)-1,1(D)0,0B(a -b) +(a-1) =022(a -b) =02(a-1) =02且且所以所以a=1,b=1+22a-2ab b-2a+1=02a+所以所以2+22a-2ab b-2a+1=0因为
8、因为解:解:(四)(四).添括号的法则:添括号的法则: 添括号时,如果括号前面是正号,括添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都号前面是负号,括到括号里的各项都要改变符号。要改变符号。(1)、同底数幂的除法)、同底数幂的除法即:同底数幂相除,底数不变,指数相减。即:同底数幂相除,底数不变,指数相减。一般地,我们有一般地,我们有nmnmaaa(其中(其中a0,m、n为为正整数正整数,并且并且mn ))0(10aa(五)(五).整式的除法:整式的除法:即任何不等于即任何不等于0的数的的数的0次幂都等于次幂都等于
展开阅读全文