全等三角形中的倍长中线与截长补短法ppt课件(同名66037).ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《全等三角形中的倍长中线与截长补短法ppt课件(同名66037).ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全等 三角形 中的 中线 截长补短 ppt 课件 同名 66037
- 资源描述:
-
1、倍长中线与截长补短法辅助线一般作法三角形三角形 图中有角平分线,可向两边作垂线。图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。线段垂直平分线,常向两端把线连。 要证线段倍与半,延长缩短可试验。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。三角形中有中线,延长中线等中线。 例1:ABC中,AB=5
2、,AC=3,求中线AD的取值范围 提示:画出图形,倍长中线AD,利用三角形两边之和大于第三边 例2:已知在ABC中,AB=AC,D在AB上,E在AC的延长线上,DE交BC于F,且DF=EF,求证:BD=CE 方法1:过D作DGAE交BC于G, 方法2:过E作EGAB交BC的延长线于G, 方法3:过D作DGBC于G,过E作EHBC的延长线于H?F?E?C?A?B?D 例3:已知在ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC于F,求证:AF=EF 提示:倍长AD至G,连接BG, 证明BDG CDA ?三角形BEG是等腰三角形?F?E?D?A?B?C 例4:已知:如图
3、,在中,D、E在BC上,且DE=EC,过D作交AE于点F,DF=AC. 求证:AE平分BAC 提示: 方法1:倍长AE至G,连结DG 方法2:倍长FE至H,连结CHBACBAC?第?1?题图?A?B?F?D?E?C在三角形中线时,常廷长加倍中线,构造全等三角形。在三角形中线时,常廷长加倍中线,构造全等三角形。例如:如图例如:如图5-1:AD为为 ABC的中线,求证:的中线,求证:AB+AC2AD分析:要证分析:要证AB+AC2AD,由图想到:由图想到: AB+BDAD,AC+CDAD,所以有所以有AB+AC+ BD+CD AD +AD=2AD,左边比要证结论多左边比要证结论多BD+CD,故不能
4、直接证出此题,故不能直接证出此题,而由而由2AD想到要构造想到要构造2AD,即加倍中线,即加倍中线,把所要证的线段转移到同一个三角形中去把所要证的线段转移到同一个三角形中去 证明:延长证明:延长AD至至E,使,使DE=AD,连接,连接BE,CE AD为为ABC的中线的中线 (已知)(已知) BD=CD (中线定义)(中线定义) 在在ACD和和EBD中中 BD=CD (已证)(已证) 1=2 (对顶角相等)(对顶角相等) AD=ED (辅助线作法)(辅助线作法) ACD EBD (SAS) BE=CA(全等三角形对应边相等)(全等三角形对应边相等) 在在ABE中有:中有:AB+BEAE(三角形两
5、边之和大(三角形两边之和大于第三边)于第三边) AB+AC2AD。(常延长中线加倍,构造全等三角形)(常延长中线加倍,构造全等三角形)练习 已知ABC,AD是BC边上的中线,分别以AB边、AC边为直角边各向外作等腰直角三角形,如图5-2,?求证EF=2AD。? ABCDEF25 -图二、截长补短法作辅助线?要证明两条线段之和等于第三条线段,可以采取“截长补短”法。?截长法即在较长线段上截取一段等于两较短线段中的一条,再证剩下的一段等于另一段较短线段。?所谓补短,即把两短线段补成一条,再证它与长线段相等。让我们来大显身手吧!例如:已知如图6-1:在ABC中,ABAC,1=2,P为AD上任一点?求
展开阅读全文