离散型随机变量及其分布函数PPT课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《离散型随机变量及其分布函数PPT课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 离散 随机变量 及其 分布 函数 PPT 课件
- 资源描述:
-
1、一一、离散型随机变量的分布函数离散型随机变量的分布函数二、几种常见的离散型随机变量二、几种常见的离散型随机变量三三、小结小结第第2.22.2节节 离散型随机变量离散型随机变量及其分布函数及其分布函数一、离散型随机变量的分布函数一、离散型随机变量的分布函数离散型离散型(1)离散型离散型 若随机变量所有可能的取值为有限个若随机变量所有可能的取值为有限个或可列无穷个,则称其为离散型随机变量或可列无穷个,则称其为离散型随机变量. 观察掷一个骰子出现的点数观察掷一个骰子出现的点数.随机变量随机变量 X 的可能值是的可能值是 :随机变量随机变量连续型连续型实例实例11, 2, 3, 4, 5, 6.非离散
2、型非离散型其它其它实例实例2 若随机变量若随机变量 X 记为记为 “连续射击连续射击, 直至命直至命中时的射击次数中时的射击次数”, 则则 X 的可能值是的可能值是: ., 3, 2, 1实例实例3 设某射手每次射击打中目标的概率是设某射手每次射击打中目标的概率是0.8,现该射手射了现该射手射了30次次,则随机变量则随机变量 X 记为记为“击中目标击中目标的次数的次数”, 则则 X 的所有可能取值为的所有可能取值为:.30, 3, 2, 1, 0实例实例2 随机变量随机变量 X 为为“测量某零件尺寸时的测误差测量某零件尺寸时的测误差”.则则 X 的取值范围为的取值范围为 (a, b) 内的任一
3、值内的任一值.实例实例1 随机变量随机变量 X 为为“灯泡的寿命灯泡的寿命”.)., 0 (2)连续型连续型 若若随机变量所有可能的取值可以连续随机变量所有可能的取值可以连续地充满某个区间地充满某个区间,则称其为则称其为连续型随机变量连续型随机变量.则则 X 的取值范围为的取值范围为 说明说明 ;, 2 , 1, 0)1( kpk. 1)2(1 kkp., 2 , 1,), 2 , 1(的分布律的分布律量量称此式为离散型随机变称此式为离散型随机变为为的概率的概率即事件即事件取各个可能值的概率取各个可能值的概率所有可能取的值为所有可能取的值为设离散型随机变量设离散型随机变量XkpxXPxXXkx
4、Xkkkk 定义定义离散型随机变量的分布律也可表示为离散型随机变量的分布律也可表示为 nnpppxxxX2121Xkpnxxx21nppp21或或例例1 1 设一汽车在开往目的地的路上需经过四盏信号设一汽车在开往目的地的路上需经过四盏信号灯灯. .每盏灯以每盏灯以 的概率禁止汽车通过的概率禁止汽车通过. .以以 表示汽车首次停下时已经过的信号灯盏数(信表示汽车首次停下时已经过的信号灯盏数(信号灯的工作是相互独立的),求号灯的工作是相互独立的),求 的分布律的分布律. .01)pp(XX解:X的分布律为Xkp01234 p(1)p p2(1)pp3(1)pp4(1)p xxkkpxXPxF)(分
5、布函数分布律kkxXPp 离散型随机变量的分布函数与其分布律之间的关系:离散型随机变量的分布函数与其分布律之间的关系:也就是:也就是:. )()( xxxxkkkkxXPpxXPxF二、常见离散型随机变量的概率分布二、常见离散型随机变量的概率分布 设随机变量设随机变量 X 只取只取0与与1两个值两个值 , 它的分布律为它的分布律为1.两点分布两点分布则称则称 X 服从服从 (0-1) 分布分布或或两点分布两点分布或或伯努利分布伯努利分布.Xkp0p 11p 两点分布是最简单的一种分布两点分布是最简单的一种分布,任何一个只有任何一个只有两种可能结果的随机现象两种可能结果的随机现象, 比如新生婴儿
6、是男还是比如新生婴儿是男还是女、明天是否下雨、种籽是否发芽等女、明天是否下雨、种籽是否发芽等, 都属于两点都属于两点分布分布.说明说明2.二项分布二项分布若若X的分布律为:的分布律为:则则nkqpCkXPknkkn0,1,2, 称随机变量称随机变量X X服从参数为服从参数为n,pn,p的的二项分布二项分布。记为。记为 ),(pnBX, ,其中其中q q1 1p p二项分布二项分布1 n两点分布两点分布?)20, 1 , 0(20.20, 2 . 0.1500,一级品的概率是多少一级品的概率是多少只只中恰有中恰有只元件只元件问问只只现在从中随机地抽查现在从中随机地抽查品率为品率为级级已知某一大批
7、产品的一已知某一大批产品的一小时的为一级品小时的为一级品用寿命超过用寿命超过某种型号电子元件的使某种型号电子元件的使按规定按规定 kk分析分析 这是不放回抽样这是不放回抽样.但由于这批元件的总数很但由于这批元件的总数很大大, 且抽查元件的数量相对于元件的总数来说又很且抽查元件的数量相对于元件的总数来说又很小小,因而此抽样可近似当作放回抽样来处理因而此抽样可近似当作放回抽样来处理.2020,重重伯伯努努利利试试验验只只元元件件相相当当于于做做检检查查试试验验否否为为一一级级品品看看成成是是一一次次把把检检查查一一只只元元件件看看它它是是例例2解解,20 只只元元件件中中一一级级品品的的只只数数记
8、记以以 X),.,(2020BX则则因此所求概率为因此所求概率为.,).().(201080202020 kkkXPkk012. 00 XP058. 01 XP137. 02 XP205. 03 XP218. 04 XP175. 05 XP109. 06 XP055. 07 XP022. 08 XP007. 09 XP002. 010 XP时时当当11,001. 0 kkXP图示概率分布图示概率分布.,400,02. 0,率率试试求求至至少少击击中中两两次次的的概概次次独独立立射射击击设设每每次次射射击击的的命命中中率率为为某某人人进进行行射射击击解解,X设击中的次数为设击中的次数为).,(0
9、20400BX则则的的分分布布律律为为X,)98. 0()02. 0(400400 kkkkXP .400, 1 , 0 k因此因此1012 XPXPXP399400)98. 0)(02. 0(400)98. 0(1 .9972. 0 例例33. 泊松分布泊松分布 0,1, 2,0,1,2,!0.,( ).keP XkkkXX 设随机变量所有可能取的值为而取各个值的概率为其中是常数则称服从参数为 的泊松分布 记为泊松分布的背景及应用泊松分布的背景及应用二十世纪初罗瑟福和盖克两位科学家在观察二十世纪初罗瑟福和盖克两位科学家在观察与分析放射性物质放射出的与分析放射性物质放射出的 粒子个数的情况时粒
展开阅读全文