书签 分享 收藏 举报 版权申诉 / 51
上传文档赚钱

类型最新现代控制理论精品课件(英文版)Chapter.ppt

  • 上传人(卖家):三亚风情
  • 文档编号:2726253
  • 上传时间:2022-05-22
  • 格式:PPT
  • 页数:51
  • 大小:1.10MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《最新现代控制理论精品课件(英文版)Chapter.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    最新 现代 控制 理论 精品 课件 英文 Chapter
    资源描述:

    1、Chapter 4 State Space Analysis ofLinear Control SystemState space analysis of linear system Controllability and Criterion Observability and Criterion Duality Principle Controllable & Observable Canonical From System structure decomposition System realization1.Controllability and Observability Defini

    2、tion of controllability: For linear system given the initial state at if there exists finite time interval and admissible input u(t) thatcould transit to any state within time , then the system is controllable atExplanation1)Input affected state is controllable2)u(t) satisfies unique solution condit

    3、ion3)Definition domain is finite intervalxAxBu 0 x t0t0ftt 0 x t fx t0ftt0t0ftt Controllable Criterion: 1) For any LTI continuous system with n dimension stateThe necessary and sufficient condition of system being completely controllable is 2) If the system has distinct eigenvalue , the necessary an

    4、d sufficient condition of system being completely controllable is matrix B does not contain row with all 0 element in diagonal canonical form obtained through equivalent transform21 ,nrank B AB A BABn rank criterion x tAx tBu t123,n Output controllableDefinition: For linear system there exists admis

    5、sible input u(t) that could transit any given to within finite timeinterval then the system is output controllable.1122001,20innbbxxubinbxAxBu 0y t fy t0fttCriterion: For any LTI continuous system with m dimension outputThe necessary and sufficient condition of system being completely output control

    6、lable is x tAx tBu ty tCx tDu t1,nrank CB CABCAB DmExample. Known system with block diagram as following, please study the state and output controllability.Solution: System state description 0010011 1x tx tu ty tx t u t y t 1x t 2xt 1x t 2xtSo the system (state) is not complete controllableThe outpu

    7、t is completely controllable10 ,110rank B ABrankn ,2001rank CB CAB Drankm 2. Observability and Criterion Definition of Observability: For linear systemGiven , if the initial state could be uniquely determined according to the measurable output over interval then the system is observable. Explanation

    8、:1)Output reflected state is observable2)Considering only the system free motion when studying observability x tAx tBu ty tCx tDu t 0 x t0ftt0,ftt y t Observabiltiy Criterion: 1) For any LTI continuous system with m dimension outputThe necessary and sufficient condition of system being completely ob

    9、servable is 21nCCAranknrank crierionCACA x tAx tBu ty tCx tDu t Observabiltiy Criterion:2) If the system has distinct eigenvalues the necessary and sufficient condition of system being completely observable is does not contain column with all 0 element in diagonal canonical form obtained through equ

    10、ivalent transform123,n 12112000nmiAP APCCPccccxPxCExample. Please examine the system observability.Solution: So the system is observable 2111)1311010 x tx tu ty tx t101022121CrankrankCASolution: A is diagonal form with distinct eigenvalue. has no column with all elements are zero. So the system is o

    11、bservableObservabiliy and controllability of discrete system (not required) 72)51320031x tx ty tx tC3. Duality principle For linear system S1and system S2System S1 and S2 are called dual systems 11111x tAx tBu ty tCx t111111urxnym 22222TTTxtA xtC utytB xt222111umxnyr Block diagram of dual systemsNot

    12、e the relationship between dual systemsDuality principle: the system S1 is completely controllable ( or observable) if its dual system S2 is completely observable ( or controllable). 1u t 1y tBCA 1x t 1x t1:S 2ut 2ytTCTBTA 2xt 2xt2:S4. Controllable and Observable Canonical From 1) Controllable canon

    13、ical form SISO systemThen the state space model is called controllable canonical form x tAx tBu ty tCx tDu t1210100000100000011nnnif ABaaaa Theorem: if system (A, B, C) is completely controllable, thenthere exists a nonsingular linear transformation makingsystem (A, B, C) to be controllable canonica

    14、l form.Matrix P is determined as1112111npp APp Ap AxPx121121001,nnwherepB AB A BABthat is thelast rowofB AB A BABStep of transform state space model to controllable canonical form:1) Calculate matrix2) Calculate invert of 3) Set 4) Calculate 5) Controllable canonical form11111npp APp A21 , nSB AB A

    15、BAB and whether rank SnS11001pS11,AP AP BP B CCP2) Observable canonical form SISO systemThen the system is called observable canonical form x tAx tBu ty tCx tDu t1021211000100010,00010001nnnaaifABaCTheorem: if system (A, B, C) is completely observable, thenthere exists a nonsingular linear transform

    16、 makingsystem (A, B, C) to be observable canonical form.Matrix T is determined as211111 ,nTT AT A TATxTx11111001nnCCCACAWhereTthelast column ofCACA Step of transform system to observable canonical form:1.Calculate matrix2.Calculate invert of 3.Set 4.Calculate 5.Observable canonical form1 nCCAVand wh

    17、ether rank VnCAV11001TTV11,ATATBT B CCT211111 ,nTT AT A TAT5. System structure decomposition If the LTI system is not completely controllable or observable. x tAx tBu ty tCx tDu t2121 ,nnif rank B AB A BABnnot controllableCCAranknnot observableCACA For LTI system we could resort the state variable a

    18、scalled system structure decompositionSystem structure decomposition could be started from controllability decomposition to observability decompositioncoccococcoxxxxxxxcocococoxxxxx:cocococoxcontrollable and observablexcontrollablebut unobservablexuncontrollablebut observablexuncontrollable and unob

    19、servable 1) Controllability structure decompositionTheorem: if the n-dimension LTI system (A, B, C) is not completely controllablethen there exists a nonsingular linear transform making thesystem to be 21 ,nrank Srank B AB A BABknxPx 11111212222112200 x tx tAABu txtxtAx ty tCCxtThe k-dimension subsy

    20、stemis completely controllable.The (n-k) dimension subsystemis uncontrollable. 2222222xtA xtytC xt 111 1122111 1x tA x tA xtBu ty tC x tBlock diagram of new system u t 1y t1B1C11A 1x t 1x t 2yt12A 2xt 2xt2C22A y tThe nonsingular matrix Where are k irrespective column vectors of matrixAnd are another

    21、 n-k column vectors making the matrix nonsingularWe can get the new system through equivalent transformation121,kknPs ss ssP12,ks ss1knssS11AP APBP BCCPPCharacteristics of decomposed system(1) Decomposition does not change the system controllability or observability2111111112121 , , ,nnnnrank B AB A

    22、 BABrank P B P AP P BP APP Brank PB AB A BABrank B AB A BAB11111nnnCPCCCPP APCACArankrankPrankCACACP P APAs to the equivalent transformed system(2) transfer function matrix of system211111112111111111211111111111 ,0000,nnnnrank B AB A BABrank P B P AP P BP APP BBA BA BABrankrank B A B A BABk 1111111

    23、121122200G sC sIABCP sIP APP BsIAABCCsIAA B CWe could getSo the TF matrix of controllable subsystem is the same as the whole system TF matrix while the dimension is reduced.(3) Input go through only the controllable subsystem to affect output(4) Uncontrollable subsystem is related to the system stab

    24、ility and response(5) The structure decomposition form is not unique 111111G sC sIABCsIAB2) Observability structure decompositionTheorem: if n-dimension system (A, B, C) is not completely observableThen there exists a nonsingular linear transform making the system to be 21nCCArank VranklnCACA x tTx

    25、t 11111222212211200 x tx tBAu txtxtBAAx ty tCxtBlock diagram of decomposed system u t y t1B1C 1x t 1x t21A 2xt 2xt22A2B11AHere, the -dimension subsystemis completely observable.And the dimension subsystemis unobservable. 221 122222200 xtA x tA xtB u tytxt 111 1111 1x tA x tBu ty tC x tlnlThe nonsing

    26、ular matrix Where are irrespective row vectors of matrix 1211llnTTTTTTT12lTTTlVAnd are row vectors making the matrix nonsingularThe decomposed system1llnTTT11ATATBT BCCTnlT (3)Controllability & observability structure decompositionTheorem: if n-dimension system (A, B, C) is not completely controllab

    27、le and observablethen there exists a nonsingular linear transform making the system to be 21nCCArank VranklnCACA 21 ,nrank Srank B AB A BABknxTxwhere x tAx tBu ty tCx t111312122232423343441300000000000AABAAAABABAAACCCThe system is decomposed into 4 subsystems 1234xtxtx txtxt 1234ytyty tytytThe 4 sub

    28、systems(1) Controllable and observable system(2) Controllable but unobservable system 221 122223324422200 xtA x tA xtA xtA xtB u tytxt 111 1133111 1x tA x tA xtBu ty tC x t(3) uncontrollable but observable system(4) uncontrollable and unobservable system Actually, all linear systems are consist of a

    29、ll or part of the four above 4 Subsystems 44334444400 xtA xtA xtytxt 3333333xtA xtytC xtStep of system controllable and observable structuredecomposition1.Controllable structure decomposition 2.Decompose the controllable subsystem into observable and unobservable systems with transform matrix 3.Deco

    30、mpose the uncontrollable subsystem into observable and unobservable systems with matrix 4.Get the transform matrix where12oooTdiag TT cccxtcontrollablex tTxtuncontrollable 1oT2oTcoTT TThe decomposed system 111312122232423343441300000000000AABAAAABx tx tu tAAAy tCCx tcA12AcAcBcCcCTransfer function ma

    31、trixConclusion: Transfer function matrix reflects only the controllable and observable part of the whole system 111211111122122111110000cccccccccoG sC sIABsIAABCCsIACsIABBsIACBAsIAC sIABGs 6. System realization For complex systems, it is difficult to get the state space description directly.It is mu

    32、ch easier to get the system transfer function (matrix) firstand then find the proper state description of the complex system.Definition: For any system with given transfer function , find the proper state description as following which satisfies x tAx tBu ty tCx t G s 1G sC sIABthen the description

    33、(A, B, C) is called the realization of system Basic characteristics of realization(1)Existence of physically realizable system (2)The realization is not unique1) Canonical form realizationDefinition: To realize the system transfer function with statespace description of controllable or observable ca

    34、nonical form G s G s(1) SISO system Where The controllable canonical form is 111111( )( )( )nnnnnnnY sbsbsbG sU ssa sasa,iiaR bR121110100000100,000101ccnnncnnABaaaaCbbb And the observable canonical formNote: dual system11211000100,01000010001nnnnoooababABbabC,TTTcococoAABCCB(2) MIMO system Where The

    35、 controllable canonical form of MIMO system is 111111( )( )( )nnnnnnnY sBsBsBG sU ssa sasa ,rmu tRy tRG sm r1211100000000,0000rrrrrrrrrrccrrrrrnrnrnrrrcnnIIABIa IaIaIa IICBBBm riBR0 ,rrIrrn rAnd the observable canonical formNote: not dual system if 112110000000,00000mmmnmnmmmnmnommmommmmommmma IBIaI

    36、BAIBBIa IBCI,TTTcococoAABCCBn m0 ,mmImmmrUsually we prefer the realization with less dimensions So controllable and observable canonical form realization are dual systemminrealization demensionn m n r,TTTcococoAABCCBifmrcontrollable canonical formelse mrobservable canonical formif mr2) minimum reali

    37、zationNote: (1)The realization of is not unique and the dimension of different realization varies.(2)Usually realization with less dimension is expected.Definition:Minimum realization is the realization of system with the least dimension and the simplest structure G s G sTheorem: The realization (A,

    38、 B, C) of system is the minimum realization when (A, B, C) is both controllable and observable.Steps of system minimum realization(1)Find one realization of , usually, we will choose the controllable or observable canonical form.(2)Perform the controllable (observable) structure decomposition on the observable (controllable) canonical form realization. G s G s

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:最新现代控制理论精品课件(英文版)Chapter.ppt
    链接地址:https://www.163wenku.com/p-2726253.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库