最新现代控制理论精品课件(英文版)Chapter.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《最新现代控制理论精品课件(英文版)Chapter.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 现代 控制 理论 精品 课件 英文 Chapter
- 资源描述:
-
1、Chapter 4 State Space Analysis ofLinear Control SystemState space analysis of linear system Controllability and Criterion Observability and Criterion Duality Principle Controllable & Observable Canonical From System structure decomposition System realization1.Controllability and Observability Defini
2、tion of controllability: For linear system given the initial state at if there exists finite time interval and admissible input u(t) thatcould transit to any state within time , then the system is controllable atExplanation1)Input affected state is controllable2)u(t) satisfies unique solution condit
3、ion3)Definition domain is finite intervalxAxBu 0 x t0t0ftt 0 x t fx t0ftt0t0ftt Controllable Criterion: 1) For any LTI continuous system with n dimension stateThe necessary and sufficient condition of system being completely controllable is 2) If the system has distinct eigenvalue , the necessary an
4、d sufficient condition of system being completely controllable is matrix B does not contain row with all 0 element in diagonal canonical form obtained through equivalent transform21 ,nrank B AB A BABn rank criterion x tAx tBu t123,n Output controllableDefinition: For linear system there exists admis
5、sible input u(t) that could transit any given to within finite timeinterval then the system is output controllable.1122001,20innbbxxubinbxAxBu 0y t fy t0fttCriterion: For any LTI continuous system with m dimension outputThe necessary and sufficient condition of system being completely output control
6、lable is x tAx tBu ty tCx tDu t1,nrank CB CABCAB DmExample. Known system with block diagram as following, please study the state and output controllability.Solution: System state description 0010011 1x tx tu ty tx t u t y t 1x t 2xt 1x t 2xtSo the system (state) is not complete controllableThe outpu
7、t is completely controllable10 ,110rank B ABrankn ,2001rank CB CAB Drankm 2. Observability and Criterion Definition of Observability: For linear systemGiven , if the initial state could be uniquely determined according to the measurable output over interval then the system is observable. Explanation
8、:1)Output reflected state is observable2)Considering only the system free motion when studying observability x tAx tBu ty tCx tDu t 0 x t0ftt0,ftt y t Observabiltiy Criterion: 1) For any LTI continuous system with m dimension outputThe necessary and sufficient condition of system being completely ob
9、servable is 21nCCAranknrank crierionCACA x tAx tBu ty tCx tDu t Observabiltiy Criterion:2) If the system has distinct eigenvalues the necessary and sufficient condition of system being completely observable is does not contain column with all 0 element in diagonal canonical form obtained through equ
10、ivalent transform123,n 12112000nmiAP APCCPccccxPxCExample. Please examine the system observability.Solution: So the system is observable 2111)1311010 x tx tu ty tx t101022121CrankrankCASolution: A is diagonal form with distinct eigenvalue. has no column with all elements are zero. So the system is o
11、bservableObservabiliy and controllability of discrete system (not required) 72)51320031x tx ty tx tC3. Duality principle For linear system S1and system S2System S1 and S2 are called dual systems 11111x tAx tBu ty tCx t111111urxnym 22222TTTxtA xtC utytB xt222111umxnyr Block diagram of dual systemsNot
12、e the relationship between dual systemsDuality principle: the system S1 is completely controllable ( or observable) if its dual system S2 is completely observable ( or controllable). 1u t 1y tBCA 1x t 1x t1:S 2ut 2ytTCTBTA 2xt 2xt2:S4. Controllable and Observable Canonical From 1) Controllable canon
13、ical form SISO systemThen the state space model is called controllable canonical form x tAx tBu ty tCx tDu t1210100000100000011nnnif ABaaaa Theorem: if system (A, B, C) is completely controllable, thenthere exists a nonsingular linear transformation makingsystem (A, B, C) to be controllable canonica
14、l form.Matrix P is determined as1112111npp APp Ap AxPx121121001,nnwherepB AB A BABthat is thelast rowofB AB A BABStep of transform state space model to controllable canonical form:1) Calculate matrix2) Calculate invert of 3) Set 4) Calculate 5) Controllable canonical form11111npp APp A21 , nSB AB A
15、BAB and whether rank SnS11001pS11,AP AP BP B CCP2) Observable canonical form SISO systemThen the system is called observable canonical form x tAx tBu ty tCx tDu t1021211000100010,00010001nnnaaifABaCTheorem: if system (A, B, C) is completely observable, thenthere exists a nonsingular linear transform
16、 makingsystem (A, B, C) to be observable canonical form.Matrix T is determined as211111 ,nTT AT A TATxTx11111001nnCCCACAWhereTthelast column ofCACA Step of transform system to observable canonical form:1.Calculate matrix2.Calculate invert of 3.Set 4.Calculate 5.Observable canonical form1 nCCAVand wh
17、ether rank VnCAV11001TTV11,ATATBT B CCT211111 ,nTT AT A TAT5. System structure decomposition If the LTI system is not completely controllable or observable. x tAx tBu ty tCx tDu t2121 ,nnif rank B AB A BABnnot controllableCCAranknnot observableCACA For LTI system we could resort the state variable a
18、scalled system structure decompositionSystem structure decomposition could be started from controllability decomposition to observability decompositioncoccococcoxxxxxxxcocococoxxxxx:cocococoxcontrollable and observablexcontrollablebut unobservablexuncontrollablebut observablexuncontrollable and unob
19、servable 1) Controllability structure decompositionTheorem: if the n-dimension LTI system (A, B, C) is not completely controllablethen there exists a nonsingular linear transform making thesystem to be 21 ,nrank Srank B AB A BABknxPx 11111212222112200 x tx tAABu txtxtAx ty tCCxtThe k-dimension subsy
展开阅读全文