书签 分享 收藏 举报 版权申诉 / 18
上传文档赚钱

类型K-means聚类算法ppt课件.ppt

  • 上传人(卖家):三亚风情
  • 文档编号:2725836
  • 上传时间:2022-05-22
  • 格式:PPT
  • 页数:18
  • 大小:1.39MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《K-means聚类算法ppt课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    means 算法 ppt 课件
    资源描述:

    1、1八、八、K-meansK-means聚类算法聚类算法1. 1.简介简介 K-means聚类算法就是基于距离的聚类算法(cluster algorithm) 主要通过不断地取离种子点最近均值的算法2个中心点的kmeans2八、八、K-meansK-means聚类算法聚类算法2. K-means2. K-means聚类算法原理聚类算法原理 K-means聚类算法的基本思想:一、指定需要划分的簇的个数k值;二、随机地选择k个初始数据对象点作为初始的聚类中心;三、计算其余的各个数据对象到这k个初始聚类中心的距离,把数据对象划归到距离它最近的那个中心所处在的簇类中;四、调整新类并且重新计算出新类的中心

    2、。五、计算聚类准则函数E,若E不满足收敛条件。重复二、三、四,六、结束3八、八、K-meansK-means聚类算法聚类算法2. K-means2. K-means聚类算法原理聚类算法原理 K-Means算法的工作框架:4八、八、K-meansK-means聚类算法聚类算法2. K-means2. K-means聚类算法原理聚类算法原理K-meansK-means算法的工作流程算法的工作流程5(补充)距离的算法的选择(补充)距离的算法的选择 一般,我们都是以欧拉距离来计算与种子点的距离。但是,还有几种可以用于k-means的距离计算方法。1)闵可夫斯基距离可以随意取值,可以是负数,也可以是正数

    3、,或是无穷大。2)欧拉距离也就是第一个公式=2的情况3)市郊区距离公式也就是第一个公式=1的情况4)余弦距离(常用于文本)6(补充)距离的算法的选择(补充)距离的算法的选择 闵可夫斯基距离欧拉距离市郊区距离公式7八、八、K-meansK-means聚类算法聚类算法3 K-means3 K-means聚类算法特点及应用聚类算法特点及应用 3.1 K-means 3.1 K-means聚类算法特点聚类算法特点优点:(1)算法简单、快速。(2)对处理大数据集,该算法是相对可伸缩的和高效率的。(3)算法尝试找出使平方误差函数值最小的k个划分。缺点:(1)K-means聚类算法只有在簇的平均值被定义的情

    4、况下才能使用。(2)要求用户必须事先给出要生成的簇的数目k。(3)对初值敏感。(4)不适合于发现非凸面形状的簇,或者大小差别很大的簇。(5)对于“噪声”和孤立点数据敏感。8K-meansK-means缺点以及改进缺点以及改进(1 1)要求用户必须事先给出要生成的簇的数目k。这个k并不是最好的。解决解决:肘部算法肘部算法是一种启发式方法来估计最优聚类数量,称为肘部法则(Elbow Method)。从图中可以看出, K 值从1到3时,平均畸变程度变化最大。超过3以后,平均畸变程度变化显著降低。因此肘部就是 K=3 。各个类畸变程度(distortions)之和;每个类的畸变程度等于该类重心与其内部

    5、成员位置距离的平方和;最优解以成本函数最小化为目标,其中uk是第k个类的重心位置9K-meansK-means缺点以及改进缺点以及改进(2 2)K-Means算法需要用初始随机种子点来搞,不同是起点结果不同。可能导致算法陷入局部最优。解决解决:K-Means+算法(初始的聚类中心之间的相互距离要尽可能的远)1.先从我们的数据库随机挑个随机点当“种子点”2.对于每个点,我们都计算其和最近的一个“种子点”的距离D(x)并保存在一个数组里,然后把这些距离加起来得到Sum(D(x)。3.然后,再取一个随机值,用权重的方式来取计算下一个“种子点”。这个算法的实现是,先取一个能落在Sum(D(x)中的随机

    6、值Random,然后用Random -= D(x),直到其=0,此时的点就是下一个“种子点”。4.重复2和3直到k个聚类中心被选出来5.利用这k个初始的聚类中心来运行标准的k-means算法假设A、B、C、D的D(x)如上图所示,当算法取值Sum(D(x)*random时,该值会以较大的概率落入D(x)较大的区间内,所以对应的点会以较大的概率被选中作为新的聚类中心。10八、八、K-meansK-means聚类算法聚类算法3 K-means3 K-means聚类算法特点及应用聚类算法特点及应用 3.2 K-means 3.2 K-means聚类算法应用聚类算法应用 (1)K-means 算法在散

    7、货船代货运系统中的应用(2)K-Means 算法在客户细分中的应用补充:K-means 适用于各种各样的领域。比如文本分析、路径规划、神经网络、用户行为、生物信息等11八、八、K-meansK-means聚类算法聚类算法实例分析一实例分析一利用K-mean方法,对AL 12个数据分成两类。初始的随机点指定为M1(20,60),M2(80,80)。列出每一次分类结果及每一类中的平均值(中心点)。 i=1,212八、八、K-meansK-means聚类算法聚类算法13八、八、K-meansK-means聚类算法聚类算法14八、八、K-meansK-means聚类算法聚类算法 15八、八、K-meansK-means聚类算法聚类算法16八、八、K-meansK-means聚类算法聚类算法实例分析二实例分析二设有数据样本集合为X=1,5,10,9,26,32,16,21,14,将X聚为3类,即K=3。随即选择前三个数值为初始的聚类中心,即z1=1,z2=5,z3=10(采用欧氏距离计算)第一次第二次17八、八、K-meansK-means聚类算法聚类算法在第五次迭代时,得到的三个簇与第四迭代结果相同,而且准则函数E收敛,迭代结束,结果如下表所示: k为迭代次数18

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:K-means聚类算法ppt课件.ppt
    链接地址:https://www.163wenku.com/p-2725836.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库