八年级数学上册第12章整式的乘除小结与复习课件新版华东师大版.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《八年级数学上册第12章整式的乘除小结与复习课件新版华东师大版.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 八年 级数 上册 12 整式 乘除 小结 复习 课件 新版 华东师大 下载 _八年级上册_华师大版(2024)_数学_初中
- 资源描述:
-
1、第12章 整式的乘除要点梳理考点讲练课堂小结课后作业 小结与复习1幂的运算法则要点梳理要点梳理法则名称文字表示式子表示同底数幂的乘法同底数幂相乘,底数 ,指数 .aman (m、n为正整数)幂的乘方幂的乘方,底数 ,指数 .(am)n (m、n为正整数)积的乘方积的乘方,等于把积的每个因式分别 ,再把所得的幂 .(ab)n (n为正整数)amnamnanbn不变相乘相加不变相乘乘方同底数幂的除法同底数幂相除,底数 ,指数 .aman (a0,m、n为正整数,且mn)相同点运算中的 不变,只对 运算不同点(1)同底数幂相乘是指数 (2)幂的乘方是指数(3)积的乘方是每个因式分别(4)同底数幂相除
2、是指数不变 相减 底数 指数 相加 相乘 乘方 相减 amn注意 (1)其中的a、b代表的不仅可以是单独的数、单独的字母,还可以是一个任意的代数式;(2)这几个法则容易混淆,计算时必须先搞清楚该不该用法则、该用哪个法则2整式的乘法单项式与单项式相乘,把它们的 、 分别相乘,对于只在一个单项式中出现的字母,则连同它的指数一起作为积的一个 .单项式与多项式相乘,用 和 的每一项分别相乘,再把所得的积 .多项式与多项式相乘,先用一个多项式的 与另一个多项式的 相乘,再把所得的积 .系数相同字母的幂因式单项式多项式相加每一项每一项相加3乘法公式公式名称 两数和乘以这两数的差两数和(差)的平方文字表示两
3、数和与这两数的差的积,等于这两数的平方差两数和(差)的平方,等于这两数的 加上(减去) 的2倍式子表示式子表示 (ab)(ab)(ab)2平方和这两数积a2b2a22abb2结构特点左边是两个项式相乘,这两个二项式中有一项 ,另一项 ; 右边是项式,是乘式中两项的 ,即相同项的平方与相反项的平方的差.左边是一个项式的和(或差)的 ;右边是项式,是左边二项式中两项的 ,再 (或减去)它们的2倍.顺口溜和差积,平方差首平方,尾平方,首尾 倍中间放,加减看前方,同加异减二完全相同互为相反数二平方差二平方三平方和加上积两公式的常用变形a2 (ab)b2;b2(ab)(ab).a2b2(ab)2 , 或
4、(ab)2 ;(ab)2(ab)2 .(ab)2ab2ab4ab点拨(1)乘法公式实际上是一种特殊形式的多项式的乘法,公式的主要作用是简化运算; (2)公式中的字母可以表示数,也可以表示其他单项式或多项式a24整式的除法(1)单项式除以单项式单项式相除,把 、 分别相除作为商的 ,对于只在被除式中出现的字母,则连同它的指数一起作为商的一个 .(2)多项式除以单项式多项式除以单项式,先把这个多项式的每一项除以这个 ,再把所得的商 .点拨 多项式除以单项式实质上是用计算法则转化为单项式除以单项式系数同底数幂因式因式单项式相加5因式分解的意义 把一个多项式化成几个整式的的形式,叫做多项式的因式分解
5、因式分解的过程和 的过程正好相反6用提公因式法分解因式 公因式的确定:公因式的系数应取多项式各项整数系数的 ;字母取多项式各项 的字母;各字母指数取次数最的 一般地,如果多项式的各项都含有公因式,可以把这个公因式提到 外面,将多项式写成 的形式,这种分解因式的方法叫做提公因式法注意 提公因式法是因式分解的首选方法,在因式分解时先要考虑多项式的各项有无公因式积整式乘法最大公约数相同低括号因式乘积7用公式法分解因式把 反过来,可以把符合公式特点的多项式分解因式,这种分解因式的方法叫做公式法这两个公式是:(1)逆用平方差公式 ;(2)逆用两数和(差)的平方公式点拨 这里的两个公式是用来分解因式的,与
6、乘法公式刚好左右互换运用公式分解因式,首先要对所给的多项式的项数、次数、系数和符号进行观察,判断符合哪个公式的条件公式中的字母可表示数、字母、单项式或多项式,只有符合公式的特征时才能运用公式乘法公式(ab)(ab) .a2b2a22abb2(ab)28因式分解的步骤(1)如果多项式的各项有公因式,那么先 ;(2)在各项提出公因式后或各项没有公因式的情况下,观察多项式的次数:二项式可以尝试运用 公式分解因式;三项式可以尝试运用 公式分解因式;(3)分解因式必须分解到每一个因式在指定的范围内都不能 为止9图形面积与代数恒等式很多代数恒等式(如平方差公式、两数和(差)的平方公式等)都可以用平面几何图
7、形的 来说明其正确性,方法是把图形的面积用不同的方式表示,根据列出的代数式 ,然后得到代数恒等式提取公因式平方差两数和(差)的再分解面积相等考点讲练考点讲练考点一 幂的运算性质例1 计算:(1)(2a)3(b3)24a3b4; (2)(-8)2016 (0.125)2015.【解析】(1)幂的混合运算中,先算乘方,再算乘除;(2)可以先用同底数幂的乘法的逆运算,将(-8)2016化为(-8) (-8)2015,再用积的乘方的性质的逆运算进行计算.【答案】(1)原式=8a3b6 4a3b4=2a3-3b6-4=2b2.(2)原式=(-8)(-8)2015 (0.125)2015 =(-8)(-8
8、) 0.1252015 =(-8)(-1)2015=8.方法总结针对训练 幂的运算性质包括同底数幂的乘法、幂的乘方、积的乘方及同底数幂的除法.这四种运算性质贯穿全章,是整式乘除及因式分解的基础.其逆向运用可将问题化繁为简,负数乘方结果的符号,奇次方得负,偶次方得正.1.下列计算不正确的是( )A.2a3 a=2a2 B. (-a3)2=a6 C. a4 a3=a7 D. a2 a4=a8D2. 计算:0.252015 (-4)2015-8100 0.5301.解:原式=0.25 (-4)2015-(23)100 0.5300 0.5 =-1-(2 0.5)300 0.5 =-1-0.5 =-1
9、.5.解:420=(42)10=1610,16101510, 4201510.3. 比较大小:420与与1510.考点二 整式的运算 例2 计算:x(x2y2-xy)-y(x2-x3y) 3x2y,其中x=1,y=3.【解析】在计算整式的加、减、乘、除、乘方的运算中,一要注意运算顺序;二要熟练正确地运用运算法则. 解:原式=(x3y2-x2y-x2y+x3y2) 3x2y =(2x3y2-2x2y) 3x2y = .2233x y当x=1,y=3时,时,原式= .222241333333x y方法总结针对训练 整式的乘除法主要包括单项式乘以单项式、单项式乘以多项式、多项式乘以多项式以及单项式除
10、以单项式、多项式除以单项式,其中单项式乘以单项式是整式乘除的基础,必须熟练掌握它们的运算法则,整式的混合运算,要按照先算乘方,再算乘除,最后算加减的顺序进行,有括号的要算括号里的. 4.一个长方形的面积是a2-2ab+a,宽为a,则长方形的长为 . 5.已知多项式2x3-4x2-1除以一个多项式A,得商为2x,余式为x-1,则这个多项式是 .a2-2b+12122xx考点三 整式的乘法公式的运用 例3 先化简,再求值:(x-y)2+(x+y)(x-y) 2x,其中x=3,y=1.5.【解析】运用平方差公式和完全平方公式,先算括号内的,再进行整式的除法运算. 解:原式=(x2-2xy+y2+x2
11、-y2) 2x =(2x2-2xy) 2x =x-y. 当当x=3,y=1.5时,原式=3-1.5=1.5.方法总结针对训练 整式的乘法公式包括平方差公式和完全平方公式,而完全平方公式又分为两个:两数和的完全平方公式和两数差的完全平方公式,在计算多项式的乘法时,对于符合这三个公式结构特征的式子,运用公式可减少运算量,提高解题速度.6.求方程(x-1)2-(x-1)(x+1)+3(1-x)=0的解.解:x2+9y2+4x-6y+5=0, (x2+4x+4)+(9y2-6y+1)=0,(x+2)2+(3y-1)2=0.x+2=0,3y-1=0,解得x=-2, y= ,7.已知x2+9y2+4x-6
12、y+5=0,求xy的值.解:原方程可化为-5x+5=0,解得x=1.1312(2 ).33xy 考点四 因式分解 例4 判断下列各式变形是不是分解因式,并说明理由: (1)a2-4+3a=(a+2)(a-2)+3a; (2)(a+2)(a-5)=a2-3a-10; (3)x2-6x+9=(x-3)2; (4)3x2-2xy+x=x(3x-2y)2.解:(1)不是,因为最后不是做乘法运算,不是积的形式;(2)不是,因为从左边到右边是做乘法运算;(3)是;(4)不是,因为令x=2,y=1,左边=10,右边=32,不是恒等变形.【解析】(1)多项式的因式分解的定义包含两个方面的条件,第一,等式的左边
展开阅读全文