高分子流变学课件-第一章绪论.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高分子流变学课件-第一章绪论.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高分子 流变学 课件 第一章 绪论
- 资源描述:
-
1、高分子流变学高分子流变学第七章第七章 流体的运动方程及应用流体的运动方程及应用第一章第一章 绪论绪论1.1 1.1 流变学概流变学概念与发展历史念与发展历史 “流变学流变学”的英语名称是的英语名称是“rheology”,这一术语是美国印第安这一术语是美国印第安纳州纳州Lafayette学院的学院的Bingham首次提出的。流变学是研究物质首次提出的。流变学是研究物质变形和流动的科学,它的研究对象主要是非牛顿流体,高分子变形和流动的科学,它的研究对象主要是非牛顿流体,高分子流体(包括溶液和熔体)是这门学科的主要研究对象之一。流体(包括溶液和熔体)是这门学科的主要研究对象之一。 流变学流变学(Rh
2、eology)是研究材料变形与流动的科学。聚合物随其是研究材料变形与流动的科学。聚合物随其分子结构、分子量的不同,以及所处温度的不同,可以是流体分子结构、分子量的不同,以及所处温度的不同,可以是流体或固体,它们的流动和变形的规律各不相同,也即有着不同的或固体,它们的流动和变形的规律各不相同,也即有着不同的流变性能。聚合物流变学系研究聚合物及其熔体的变形和流动流变性能。聚合物流变学系研究聚合物及其熔体的变形和流动特性。特性。 英国物理学家麦克斯韦和开尔文很早就认识到材料的变化与时间存在紧密联系的时间效应。 麦克斯韦在1869年发现,材料可以是弹性的,又可以是粘性的。对于粘性材料,应变相同的情况下
3、,应力不能保持恒定,而是以某一速率减小到零,其速率取决于施加的起始应力值和材料的性质。这种现象称为应力松弛。许多学者还发现,应力虽然不变,材料棒却可随时间继续变形,这种性能就是蠕变或流动。1.2 聚聚合合物材料典型的流变行为物材料典型的流变行为 1. 魏森贝格魏森贝格(Weissenberg)效应效应 当将一支快速旋转的圆棒插入牛顿流体时,在圆棒周围会形成一个凹形液面。若将此旋转着的圆棒插入粘弹性流体,则流体有沿着旋转圆棒向上爬的趋向, 魏森贝格于1944年在英国帝国理工学院公开演示了这一有趣的实验,因此,这一现象被称为魏森贝格效应,俗称爬杆效应。 魏森贝格魏森贝格(Weissenberg)效
4、应效应 牛顿流体非牛顿流体图图 魏森贝格效应魏森贝格效应2. 挤出胀大和弹性回复效应挤出胀大和弹性回复效应(Barus效应效应) 粘度相当的牛顿流体和粘弹性流体,当它们分别从大容器中通过直径为D的细圆管流出时,牛顿流体形成射流收缩,而粘弹性流体的流束直径De比圆管内径要大,这一现象称为挤出胀大效应或Barus效应。当突然停止挤出,并剪断挤出物,挤出物会发生回缩,称为弹性回复效应。 挤出胀大和弹性回复效应挤出胀大和弹性回复效应(Barus效应效应) 挤出胀大挤出胀大甘油的射流收缩甘油的射流收缩DeD弹性回复弹性回复图图5 粘弹性流体的挤出胀大和弹性回复粘弹性流体的挤出胀大和弹性回复3.无管虹吸现
5、象无管虹吸现象 无管虹吸现象是粘弹性流体具有高拉伸粘度的作用结果。在牛顿流体的虹吸实验中,当虹吸管提离液面,虹吸就停止了。而有些粘弹性流体很容易表演无管虹吸实验,即使把虹吸管提得很高,液体还能从杯中吸起。无管虹吸现象无管虹吸现象 牛顿流体牛顿流体图图6 粘弹性流体的无管虹吸现象粘弹性流体的无管虹吸现象粘弹性流体粘弹性流体4. 湍流减阻现象湍流减阻现象(Toms效应效应) Toms在1948年发现高分子聚合物稀溶液的湍流摩擦阻力比纯溶剂的阻力明显减小,这个异常现象称为湍流减阻现象或Toms效应。由于Toms效应可降低流体机械和流体输送过程的能量消耗,因而已成为近代流体力学的一个热门研究课题。 如
6、在水中加入50mg/L的聚乙烯氧化物,其结果使湍流条件下的摩阻降低30%;在消防水中添加少量聚乙烯氧化物,可使消防车龙头喷出水的扬程提高一倍以上。 1.31.3聚聚合物流变学研究的内合物流变学研究的内容和方法容和方法 1.4 聚合物流变行为的特性 1.4.11.4.1经典的力学模式经典的力学模式 刚体刚体(Rigid solid):只考虑物体的平动和转动而不考虑只考虑物体的平动和转动而不考虑 其形状的变化其形状的变化线性弹性体(线性弹性体(Linear elastic solid)或虎克弹性体)或虎克弹性体 作用力和形变符合虎克定律作用力和形变符合虎克定律物体是刚体还是弹性体取决于实验方法物体
7、是刚体还是弹性体取决于实验方法 E 1.4.21.4.2液体的经典模式液体的经典模式完全流体(完全流体(Perfect fluid)线性粘性流体(线性粘性流体(Linear viscous fluid)或牛顿流体)或牛顿流体流体作用在任何表面上的力总是垂直于该表面流体作用在任何表面上的力总是垂直于该表面 流动速度正比于所加之力流动速度正比于所加之力 1.4.3聚合物流变模式的形态聚合物流变模式的形态q聚合物的力学状态聚合物的力学状态 q聚合物形态的转变聚合物形态的转变 q聚合物粘弹态聚合物粘弹态 聚合物流变行为的多样性和多元性聚合物流变行为的多样性和多元性聚合物的力学状态聚合物的力学状态 聚合
8、物没有明确的固态和液态的界限,固体和液体聚合物没有明确的固态和液态的界限,固体和液体的转化过程比低分子材料复杂得多,必须认识聚合的转化过程比低分子材料复杂得多,必须认识聚合物力学形态的多样性物力学形态的多样性 q力学状态力学状态: :结晶态、无定形态和液晶态结晶态、无定形态和液晶态 q聚合物液态聚合物液态: :溶体、悬浮体、分散体和熔体溶体、悬浮体、分散体和熔体 q固体聚合物固体聚合物: :均质态、取向态和多相态均质态、取向态和多相态q无定形态聚合物:玻璃态、高弹态和粘流态;无定形态聚合物:玻璃态、高弹态和粘流态;q结晶型聚合物有晶体和熔体结晶型聚合物有晶体和熔体流变性能与流变性能与时间有关,
展开阅读全文