指数函数、对数函数问题.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《指数函数、对数函数问题.doc》由用户(青草)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 指数函数 对数 函数 问题
- 资源描述:
-
1、指数函数、对数函数问题高考要求 指数函数、对数函数是高考考查的重点内容之一,本节主要帮助考生掌握两种函数的概念、图象和性质并会用它们去解决某些简单的实际问题 重难点归纳 (1)运用两种函数的图象和性质去解决基本问题 此类题目要求考生熟练掌握函数的图象和性质并能灵活应用 (2)综合性题目 此类题目要求考生具有较强的分析能力和逻辑思维能力 (3)应用题目 此类题目要求考生具有较强的建模能力 典型题例示范讲解 例1已知过原点O的一条直线与函数y=log8x的图象交于A、B两点,分别过点A、B作y轴的平行线与函数y=log2x的图象交于C、D两点 (1)证明 点C、D和原点O在同一条直线上;(2)当B
2、C平行于x轴时,求点A的坐标 命题意图 本题主要考查对数函数图象、对数换底公式、对数方程、指数方程等基础知识,考查学生的分析能力和运算能力 知识依托 (1)证明三点共线的方法 kOC=kOD (2)第(2)问的解答中蕴涵着方程思想,只要得到方程(1),即可求得A点坐标 错解分析 不易考虑运用方程思想去解决实际问题 技巧与方法 本题第一问运用斜率相等去证明三点共线;第二问运用方程思想去求得点A的坐标 (1)证明 设点A、B的横坐标分别为x1、x2,由题意知 x11,x21,则A、B纵坐标分别为log8x1,log8x2 因为A、B在过点O的直线上,所以,点C、D坐标分别为(x1,log2x1),
3、(x2,log2x2),由于log2x1=3log8x2,所以OC的斜率 k1=,OD的斜率 k2=,由此可知 k1=k2,即O、C、D在同一条直线上 (2)解 由BC平行于x轴知 log2x1=log8x2 即 log2x1=log2x2,代入x2log8x1=x1log8x2得x13log8x1=3x1log8x1,由于x11知log8x10,x13=3x1 又x11,x1=,则点A的坐标为(,log8) 例2在xOy平面上有一点列P1(a1,b1),P2(a2,b2),Pn(an,bn),对每个自然数n点Pn位于函数y=2000()x(0a1)的图象上,且点Pn,点(n,0)与点(n+1
4、,0)构成一个以Pn为顶点的等腰三角形 (1)求点Pn的纵坐标bn的表达式;(2)若对于每个自然数n,以bn,bn+1,bn+2为边长能构成一个三角形,求a的取值范围;(3)设Cn=lg(bn)(nN*),若a取(2)中确定的范围内的最小整数,问数列Cn前多少项的和最大?试说明理由 命题意图 本题把平面点列,指数函数,对数、最值等知识点揉合在一起,构成一个思维难度较大的综合题目,本题主要考查考生对综合知识分析和运用的能力 知识依托 指数函数、对数函数及数列、最值等知识 错解分析 考生对综合知识不易驾驭,思维难度较大,找不到解题的突破口 技巧与方法 本题属于知识综合题,关键在于读题过程中对条件的
展开阅读全文