高考数学考前应知应会内容.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高考数学考前应知应会内容.docx》由用户(青草)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 考前 应知应会 内容 下载 _其它资料_高考专区_数学_高中
- 资源描述:
-
1、高考数学考前应知应会内容良好的心态是稳定发挥乃至超常发挥的前提考前这几天,最明智的做法就是回归基础,巩固基础知识和基本能力;最有效的心态调节方法就是每天练一组基础小题做到保温训练手不凉,每天温故一组基础知识做到胸中有粮心不慌一集合与常用逻辑用语必记知识1集合(1)集合的运算性质ABABA;ABBBA;ABUAUB.(2)子集、真子集个数计算公式对于含有n个元素的有限集合M,其子集、真子集、非空子集、非空真子集的个数依次为2n,2n1,2n1,2n2.(3)集合运算中的常用方法若已知的集合是不等式的解集,用数轴求解;若已知的集合是点集,用数形结合法求解;若已知的集合是抽象集合,用Venn图求解2
2、含有一个量词的命题的否定全称量词命题的否定是存在量词命题,存在量词命题的否定是全称量词命题,如下所述:命题命题的否定xM,p(x)xM,p(x)xM,p(x)xM,p(x)提醒由于全称量词命题经常省略量词,因此,在写这类命题的否定时,应先确定其中的全称量词,再改写量词和否定结论3全称量词命题与存在量词命题真假的判断方法命题名称真假判断方法一判断方法二全称量词命题真所有对象使命题真否定命题为假假存在一个对象使命题假否定命题为真存在量词命题真存在一个对象使命题真否定命题为假假所有对象使命题假否定命题为真必会结论1集合运算的重要结论(1)ABA,ABB;A(AB);B(AB),AAA,AA,ABBA
3、;AAA,A,ABBA.(2)若AB,则ABA;反之,若ABA,则AB.若AB,则ABB;反之,若ABB,则AB.(3)A(UA),A(UA)U,U(UA)A.(4)U(AB)(UA)(UB),U(AB)(UA)(UB)2一些常见词语的否定正面词语否定正面词语否定正面词语否定等于()不等于()是不是任意的存在一个大于()不大于(小于或等于,即“”)都是不都是(至少有一个不是)所有的存在一个小于()不小于(大于或等于,即“”)至多有一个至少有两个且或全为不全为至少有一个一个也没有或且3.充分条件与必要条件的三种判定方法(1)定义法:正、反方向推理,若pq,则p是q的充分条件(或q是p的必要条件)
4、;若pq,且qp,则p是q的充分不必要条件(或q是p的必要不充分条件)(2)集合法:利用集合间的包含关系例如,若AB,则A是B的充分条件(B是A的必要条件);若AB,则A是B的充要条件(3)等价法:将命题等价转化为另一个便于判断真假的命题易错剖析易错点1忽视集合中元素的互异性【突破点】 求解集合中元素含有参数的问题,先根据其确定性列方程,求出值后,再根据其互异性检验易错点2未弄清集合的代表元素【突破点】 集合的特性由元素体现,在解决集合的关系及运算时,要弄清集合的代表元素是什么易错点3遗忘空集【突破点】 空集是一个特殊的集合,空集是任何非空集合的真子集,由于思维定式的原因,在解题中常遗忘这个集
5、合,导致解题错误或解题不全面易错点4忽视不等式解集的端点值【突破点】 进行集合运算时,可以借助数轴,要注意集合中的“端点元素”在运算时的“取”与“舍”易错点5对含有量词的命题的否定不当【突破点】 由于有的命题的全称量词往往可以省略不写,从而在进行命题否定时易只否定全称量词命题的判断词,而不否定被省略的全称量词易错快攻易错快攻一遗忘空集典例1设集合Ax|2x6,Bx|2mxm3,若BA,则实数m的取值范围是_听课笔记注意空集的特殊性由于空集是任何集合的子集,因此,本题中B时也满足BA.解含有参数的集合问题时,要注意含参数的所给集合可能是空集的情况空集是一个特殊的集合,由于受思维定式影响,同学们往
6、往在解题中易遗忘这个集合,导致解题错误或解题不全面易错快攻二对含有量词的命题的否定不当典例2设命题p:x0,x21,则p为()Ax0,x21Bx0,x21Cx0,x21 Dx0,x20,0,0(a0)恒成立的条件是a0,0.(2)ax2bxc0(a0)恒成立的条件是a0,0(0(0时,易忽视系数a的讨论导致漏解或错解,要注意分a0,a0)的函数,在应用基本不等式求函数最值时,一定要注意ax,bx同号易错点3解不等式时转化不等价【突破点】 如求函数f(x)gx0可转化为f(x)gx0或f(x)gx0,否则易出错易错点4解含参数的不等式时分类讨论不当【突破点】解形如ax2bxc0的不等式时,首先要
7、考虑对x2的系数进行分类讨论当a0时是一次不等式,解的时候还要对b,c进一步分类讨论;当a0且0时,不等式可化为a(xx1)(xx2)0,再求解集易错点5不等式恒成立问题处理不当【突破点】 应注意恒成立与存在性问题的区别,如对任意xa,b都有f(x)g(x)成立,即f(x)g(x)0的恒成立问题,但对存在xa,b,使f(x)g(x)成立,则为存在性问题,可化为f(x)ming(x)max,应特别注意两函数中的最大值与最小值的关系易错快攻易错快攻一忽视基本不等式的应用条件典例1函数yax13(a0,a1)过定点A,若点A在直线mxny2(m0,n0)上,则1m+1n的最小值为()A3 B. 22
8、C3+222 D3222听课笔记应用基本不等式求最值时必须遵循“一正、二定、三相等”的顺序本题中求出m2n1后,若采用两次基本不等式,有如下错解:m2n12 mn2,所以mn22,1mn2,又1m+1n21mn,所以1m+1n22.选B.此错解中,式取等号的条件是m2n,式取等号的条件是1m1n即mn,两式的等号不可能同时取得,所以22不是1m+1n的最小值【方法点津】基本不等式加以引申,可得到如下结论:当ab0时,a a2+b22a+b2ab21a+1bb,当且仅当ab时等号成立其中称 a2+b22为平方平均数、称a+b2为算术平均数、称ab为几何平均数、称21a+1b为调和平均数,它们分别
9、包含了两个正数的平方之和a2b2、两个正数之和ab、两个正数之积ab、两个正数的倒数之和1a+1b,只要已知这四个代数式的其中一个为定值,就可以求解另外三式的最值,应用十分广泛,应加以重视易错快攻二解含参数的不等式时分类不当致误典例2已知函数f(x)ax2xa.(1)若x0,f(x)0恒成立,求实数a的取值范围;(2)已知实数aR,解关于x的不等式f(x)0.听课笔记解含参数的不等式时应注意的问题:(1)二次项系数中含有参数时,参数的符号影响不等式的解集,不要忽略二次项系数为零的情况;(2)解含参数的一元二次不等式,可先考虑因式分解,再对根的大小进行分类讨论,若不能因式分解,则可对判别式进行分
10、类讨论,分类时要做到不重不漏;(3)不同参数范围的解集不能取并集,应分类表述三函数、导数必记知识1函数的定义域和值域(1)求函数定义域的类型和相应方法若已知函数的解析式,则函数的定义域是使解析式有意义的自变量的取值范围若已知f(x)的定义域为a,b,则f(g(x)的定义域为不等式ag(x)b的解集;反之,已知f(g(x)的定义域为a,b,则f(x)的定义域为函数yg(x)(xa,b)的值域(2)常见函数的值域一次函数ykxb(k0)的值域为R.二次函数yax2bxc(a0):当a0时,值域为4acb24a,+,当a0fx1fx2x1x20f(x)在a,b上是增函数;(x1x2) f(x1)f(
11、x2)0fx1fx2x1x20,且a1)恒过(0,1)点;yloga x(a0,且a1)恒过(1,0)点(2)单调性:当a1时,yax在R上单调递增;yloga x在(0,)上单调递增;当0a0的解集确定函数f(x)的单调增区间,由f(x)0(或f(x)0(0时,f(x)0有两个实数解,即f(x)有两个极值点;当4(b23ac)0时,f(x)无极值点(2)若函数f(x)的图象存在水平切线,则f(x)0有实数解,从而4(b23ac)0.(3)若函数f(x)在R上单调递增,则a0且4(b23ac)0.易错剖析易错点1函数的单调区间理解不准确【突破点】对于函数的几个不同的单调递增(减)区间,切忌使用
展开阅读全文