-高等数学-课件完整版.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《-高等数学-课件完整版.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等数学 课件 完整版
- 资源描述:
-
1、一、一、 基本概念基本概念1.1.集合集合: :具有某种特定性质的事物的具有某种特定性质的事物的总体总体.组成这个集合的事物称为该集合的组成这个集合的事物称为该集合的元素元素.,21naaaA 所具有的特征所具有的特征xxM 有限集有限集无限集无限集,Ma ,Ma .,的的子子集集是是就就说说则则必必若若BABxAx .BA 记作记作数集分类数集分类:N-自然数集自然数集Z-整数集整数集Q-有理数集有理数集R-实数集实数集数集间的关系数集间的关系:.,RQQZZN .,相相等等与与就就称称集集合合且且若若BAABBA )(BA ,2 , 1 A例如例如,0232 xxxC.CA 则则不含任何元
2、素的集合称为不含任何元素的集合称为空集空集.)(记作记作例如例如,01,2 xRxx规定规定 空集为任何集合的子集空集为任何集合的子集.2.2.区间区间: :是指介于某两个实数之间的全体实数是指介于某两个实数之间的全体实数.这两个实数叫做区间的端点这两个实数叫做区间的端点.,baRba 且且bxax 称为开区间称为开区间,),(ba记作记作bxax 称为闭区间称为闭区间,ba记作记作oxaboxabbxax bxax 称为半开区间称为半开区间,称为半开区间称为半开区间,),ba记作记作,(ba记作记作),xaxa ),(bxxb oxaoxb有限区间有限区间无限区间无限区间区间长度的定义区间长
3、度的定义: :两端点间的距离两端点间的距离(线段的长度线段的长度)称为区间的长度称为区间的长度.3.3.邻域邻域: :. 0, 且且是两个实数是两个实数与与设设a).(0aU记作,叫做这邻域的中心叫做这邻域的中心点点a.叫叫做做这这邻邻域域的的半半径径 . )( axaxaUxa a a ,邻邻域域的的去去心心的的点点 a. 0)( axxaU,邻域邻域的的称为点称为点数集数集 aaxx 5.5.绝对值绝对值: : 00aaaaa)0( a运算性质运算性质:;baab ;baba .bababa )0( aax;axa )0( aax;axax 或或绝对值不等式绝对值不等式: (1) 符号函数
4、符号函数 010001sgnxxxxy当当当当当当几个特殊的函数举例几个特殊的函数举例1-1xyoxxx sgn(2) 取整函数取整函数 y=xx表示不超过表示不超过 的最大整数的最大整数 1 2 3 4 5 -2-4-4 -3 -2 -1 4 3 2 1 -1-3xyo阶梯曲线阶梯曲线x 是无理数时是无理数时当当是有理数时是有理数时当当xxxDy01)(有理数点有理数点无理数点无理数点1xyo(3) 狄利克雷函数狄利克雷函数(4) 取最值函数取最值函数)(),(maxxgxfy )(),(minxgxfy yxo)(xf)(xgyxo)(xf)(xg 0, 10, 12)(,2xxxxxf例
5、如例如12 xy12 xy在自变量的不同变化范围中在自变量的不同变化范围中, 对应法则用不同的对应法则用不同的式子来表示的函数式子来表示的函数,称为称为分段函数分段函数.例例2 2.)3(,212101)(的定义域的定义域求函数求函数设设 xfxxxf解解 23121301)3(xxxf 212101)(xxxf 122231xx1, 3 : fD故故三、函数的特性三、函数的特性M-Myxoy=f(x)X有界有界无界无界M-MyxoX0 x,)(, 0,成立成立有有若若MxfXxMDX 1函数的有界性函数的有界性:.)(否否则则称称无无界界上上有有界界在在则则称称函函数数Xxf2函数的单调性函
6、数的单调性:,)(DIDxf 区间区间的定义域为的定义域为设函数设函数,2121时时当当及及上任意两点上任意两点如果对于区间如果对于区间xxxxI ;)(上上是是单单调调增增加加的的在在区区间间则则称称函函数数Ixf),()()1(21xfxf 恒有恒有)(xfy )(1xf)(2xfxyoI)(xfy )(1xf)(2xfxyoI;)(上是单调减少的上是单调减少的在区间在区间则称函数则称函数Ixf,)(DIDxf 区间区间的定义域为的定义域为设函数设函数,2121时时当当及及上任意两点上任意两点如果对于区间如果对于区间xxxxI ),()()2(21xfxf 恒有恒有3函数的奇偶性函数的奇偶
7、性:偶函数偶函数有有对于对于关于原点对称关于原点对称设设,DxD )()(xfxf yx)( xf )(xfy ox-x)(xf;)(为偶函数为偶函数称称xf有有对于对于关于原点对称关于原点对称设设,DxD )()(xfxf ;)(为奇函数为奇函数称称xf奇函数奇函数)( xf yx)(xfox-x)(xfy 4函数的周期性函数的周期性:(通常说周期函数的周期是指其最小正(通常说周期函数的周期是指其最小正周期周期).,)(Dxf的定义域为的定义域为设函数设函数如果存在一个不为零的如果存在一个不为零的.)()(恒成立恒成立且且xflxf 为周为周则称则称)(xf.)( ,DlxDxl 使得对于任
8、一使得对于任一数数.)(,的周期的周期称为称为期函数期函数xfl2l 2l23l 23l)(xfy 直直接接函函数数xyo),(abQ),(baP)(xy 反函数反函数 直接函数与反函数的图形关于直线直接函数与反函数的图形关于直线 对称对称.xy 四、反函数四、反函数五、小结五、小结基本概念基本概念集合集合, 区间区间, 邻域邻域, 绝对值绝对值.函数的概念函数的概念函数的特性函数的特性有界性有界性, ,单调性单调性, ,奇偶性奇偶性, ,周期性周期性. .反函数反函数一、基本初等函数一、基本初等函数1.幂函数幂函数)( 是常数是常数 xyoxy)1 , 1(112xy xy xy1 xy 2
9、.指数函数指数函数)1, 0( aaayxxay xay)1( )1( a)1 , 0( xey 3.对数函数对数函数)1, 0(log aaxyaxyln xyalog xya1log )1( a)0 , 1( 4.三角函数三角函数正弦函数正弦函数xysin xysin xycos xycos 余弦函数余弦函数正切函数正切函数xytan xytan xycot 余切函数余切函数xycot 正割函数正割函数xysec xysec xycsc 余割函数余割函数xycsc 5.反三角函数反三角函数xyarcsin xyarcsin 反反正正弦弦函函数数xyarccos xyarccos 反反余余弦
10、弦函函数数xyarctan xyarctan 反正切函数反正切函数 幂函数幂函数,指数函数指数函数,对数函数对数函数,三角函数和反三角函数和反三角函数统称为三角函数统称为基本初等函数基本初等函数.xycot 反余切函数反余切函数arcxycot arc二、复合函数二、复合函数 初等函数初等函数1.复合函数复合函数,uy 设设,12xu 21xy 定义定义: 设函数设函数)(ufy 的定义域的定义域fD, 而函数而函数)(xu 的值域为的值域为 Z, 若若 ZDf, 则称则称函数函数)(xfy 为为x的的复合函数复合函数.,自自变变量量x,中中间间变变量量u,因变量因变量y注意注意: :1.不是
11、任何两个函数都可以复合成一个复不是任何两个函数都可以复合成一个复合函数的合函数的;,arcsinuy 例如例如;22xu )2arcsin(2xy 2.复合函数可以由两个以上的函数经过复复合函数可以由两个以上的函数经过复合构成合构成.,2cotxy 例如例如,uy ,cotvu .2xv 2.初等函数初等函数 由常数和基本初等函数经过有限次由常数和基本初等函数经过有限次四则运算和有限次的函数复合步骤所构成并可用四则运算和有限次的函数复合步骤所构成并可用一个式子表示一个式子表示的函数的函数,称为称为初等函数初等函数.例例1 1).(,0, 10, 2)(,1,1,)(2xfxxxxxxxxexf
12、x 求求设设解解 1)(),(1)(,)()(xxxexfx,1)(10时时当当 x, 0 x或或, 12)( xx;20 x, 0 x或或, 11)(2 xx; 1 x,1)(20时时当当 x, 0 x或或, 12)( xx;2 x, 0 x或或, 11)(2 xx; 01 x综上所述综上所述.2, 120011, 2,)(2122 xxxxxexexfxx 三、双曲函数与反双曲函数三、双曲函数与反双曲函数2sinhxxeex 双曲正弦双曲正弦xycosh xysinh ),(:D奇函数奇函数.2coshxxeex 双曲余弦双曲余弦),(:D偶函数偶函数.1.双曲函数双曲函数xey21 xe
13、y 21xxxxeeeexxx coshsinhtanh双曲正切双曲正切奇函数奇函数,),(: D有界函数有界函数,双曲函数常用公式双曲函数常用公式;sinhcoshcoshsinh)sinh(yxyxyx ;sinhsinhcoshcosh)cosh(yxyxyx ;1sinhcosh22 xx;coshsinh22sinhxxx .sinhcosh2cosh22xxx 2.反双曲函数反双曲函数奇函数奇函数,),(: D.),(内单调增加内单调增加在在;sinh xy 反反双双曲曲正正弦弦ar).1ln(sinh2 xxxyarsinhar xy.), 1内单调增加内单调增加在在), 1 :
14、 D y反反双双曲曲余余弦弦coshar).1ln(cosh2 xxxyarxcosharx y.11ln21xx )1 , 1(: D奇函数奇函数,.)1 , 1(内单调增加内单调增加在在 y反反双双曲曲正正切切tanharxytanh arxtanharx y四、小结四、小结函数的分类函数的分类:函数函数初等函数初等函数非初等函数非初等函数( (分段函数分段函数, ,有无穷多项等函数有无穷多项等函数) )代数函数代数函数超越函数超越函数有理函数有理函数无理函数无理函数有理整函数有理整函数( (多项式函数多项式函数) )有理分函数有理分函数( (分式函数分式函数) )思考题思考题下下列列函函
15、数数能能否否复复合合为为函函数数)(xgfy ,若若能能,写写出出其其解解析析式式、定定义义域域、值值域域,)()1(uufy 2)(xxxgu ,ln)()2(uufy 1sin)( xxgu思考题解答思考题解答2)()1(xxxgfy ,10| xxDx21, 0)( Df)2(不能不能01sin)( xxg)(xg的值域与的值域与)(uf的定义域之交集是空集的定义域之交集是空集._1反反三三角角函函数数统统称称对对数数函函数数,三三角角函函数数和和、幂幂函函数数,指指数数函函数数,._)(ln31)(2的定义域为的定义域为,则函数,则函数,的定义域为的定义域为、函数、函数xfxf一、填空
16、题一、填空题:._32复复合合而而成成的的函函数数为为,、由由函函数数xueyu ._2lnsin4复合而成复合而成由由、函数、函数xy ._)0()()(_)0)(_)(sin_10)(52的定义域为的定义域为,的定义域为的定义域为,的定义域为的定义域为,为为)的定义域)的定义域(,则,则,的定义域为的定义域为、若、若 aaxfaxfaaxfxfxfxf练练 习习 题题.sin的图形的图形”作函数”作函数二、应用图形的“叠加二、应用图形的“叠加xxy .)()()(111011)(,并作出它们的图形,并作出它们的图形,求求,三、设三、设xfgxgfexgxxxxfx .)()()(30. 0
17、5020. 0500220形形出图出图之间的函数关系,并作之间的函数关系,并作千克千克于行李重量于行李重量元元元,试建立行李收费元,试建立行李收费出部分每千克出部分每千克千克超千克超元,超出元,超出千克每千克收费千克每千克收费千克以下不计费,千克以下不计费,定如下:定如下:四、火车站行李收费规四、火车站行李收费规xxf一、一、1 1、基本初等函数;、基本初等函数; 2 2、,3ee; 3 3、2xey ; 4 4、xvvuuy2,ln,sin ; 5 5、-1,1,-1,1, kk2,2,1 ,aa , , 212101 ,aaaa . .三、三、 1, 10, 00, 1)(xxxxgf;
18、1,11, 11,)(xexxexfg. .练习题答案练习题答案四、四、 50),50(3 . 0105020,2 . 0200 xxxxxy“割之弥细,所割之弥细,所失弥少,割之又失弥少,割之又割,以至于不可割,以至于不可割,则与圆周合割,则与圆周合体而无所失矣体而无所失矣”1 1、割圆术:、割圆术:播放播放刘徽刘徽一、概念的引入一、概念的引入R正六边形的面积正六边形的面积1A正十二边形的面积正十二边形的面积2A正正 形的面积形的面积126 nnA,321nAAAAS2 2、截丈问题:、截丈问题:“一尺之棰,日截其半,万世不竭一尺之棰,日截其半,万世不竭”;211 X第一天截下的杖长为第一天
19、截下的杖长为;212122 X为为第二天截下的杖长总和第二天截下的杖长总和;2121212nnXn 天截下的杖长总和为天截下的杖长总和为第第nnX211 1二、数列的定义二、数列的定义定义定义:按自然数按自然数, 3 , 2 , 1编号依次排列的一列数编号依次排列的一列数 ,21nxxx (1)称为称为无穷数列无穷数列,简称简称数列数列.其中的每个数称为数其中的每个数称为数列的列的项项,nx称为称为通项通项(一般项一般项).数列数列(1)记为记为nx.例如例如;,2 , 8 , 4 , 2n;,21,81,41,21n2n21n注意:注意: 1.数列对应着数轴上一个点列数列对应着数轴上一个点列
20、.可看作一可看作一动点在数轴上依次取动点在数轴上依次取.,21nxxx1x2x3x4xnx2.数列是整标函数数列是整标函数).(nfxn ;,)1( , 1 , 1, 11 n)1(1 n;,)1(,34,21, 21nnn )1(1nnn ,333,33, 3 .)1(11时的变化趋势时的变化趋势当当观察数列观察数列 nnn播放播放三、数列的极限三、数列的极限问题问题: 当当 无限增大时无限增大时, 是否无限接近于某一是否无限接近于某一确定的数值确定的数值?如果是如果是,如何确定如何确定?nxn. 1)1(1,1无限接近于无限接近于无限增大时无限增大时当当nxnnn 问题问题: “无限接近无
21、限接近”意味着什么意味着什么?如何用数学语言如何用数学语言刻划它刻划它. 1nxnnn11)1(1 通过上面演示实验的观察通过上面演示实验的观察:,1001给定给定,10011 n由由,100时时只要只要 n,10011 nx有有,10001给定给定,1000时时只要只要 n,1000011 nx有有,100001给定给定,10000时时只要只要 n,100011 nx有有, 0 给定给定,)1(时时只要只要 Nn.1成立成立有有 nx定义定义 如果对于任意给定的正数如果对于任意给定的正数 ( (不论它多么不论它多么小小),),总存在正数总存在正数N, ,使得对于使得对于Nn 时的一切时的一切
22、nx, ,不等式不等式 axn都成立都成立, ,那末就称常数那末就称常数a是数列是数列nx的极限的极限, ,或者称数列或者称数列nx收敛于收敛于a, ,记为记为 ,limaxnn 或或).( naxn如果数列没有极限如果数列没有极限,就说数列是发散的就说数列是发散的.注意:注意:;. 1的无限接近的无限接近与与刻划了刻划了不等式不等式axaxnn . 2有关有关与任意给定的正数与任意给定的正数 Nx1x2x2 Nx1 Nx3x几何解释几何解释: 2 a aa.)(,),(,落在其外落在其外个个至多只有至多只有只有有限个只有有限个内内都落在都落在所有的点所有的点时时当当NaaxNnn :定义定义
23、N 其中其中;:每一个或任给的每一个或任给的 .:至少有一个或存在至少有一个或存在 ., 0, 0lim axNnNaxnnn恒有恒有时时使使数列极限的定义未给出求极限的方法数列极限的定义未给出求极限的方法.例例1. 1)1(lim1 nnnn证明证明证证1 nx1)1(1 nnnn1 , 0 任给任给,1 nx要要,1 n只要只要,1 n或或所以所以,1 N取取,时时则当则当Nn 1)1(1nnn就有就有. 1)1(lim1 nnnn即即注意:注意:例例2.lim),(CxCCxnnn 证明证明为常数为常数设设证证Cxn CC ,成成立立 ,0 任给任给所以所以,0 ,n对于一切自然数对于一
24、切自然数.limCxnn 说明说明:常数列的极限等于同一常数常数列的极限等于同一常数.小结小结: 用定义证数列极限存在时用定义证数列极限存在时,关键是任意给关键是任意给定定 寻找寻找N,但不必要求最小的但不必要求最小的N., 0 例例3. 1, 0lim qqnn其中其中证明证明证证, 0 任给任给,0 nnqx,lnln qn,lnlnqN 取取,时时则当则当Nn ,0 nq就有就有. 0lim nnq, 0 q若若; 00limlim nnnq则则, 10 q若若,lnlnqn 例例4.lim, 0lim, 0axaxxnnnnn 求证求证且且设设证证, 0 任给任给.limaxnn 故故
25、,limaxnn ,1 axNnNn时恒有时恒有使得当使得当axaxaxnnn 从而有从而有aaxn a1 四、四、数列极限的性质数列极限的性质1.有界性有界性定义定义: 对数列对数列nx, 若存在正数若存在正数M, 使得一切自使得一切自然数然数n, 恒有恒有Mxn 成立成立, 则称数列则称数列nx有界有界,否则否则, 称为无界称为无界.例如例如,;1 nnxn数列数列.2nnx 数列数列数轴上对应于有界数列的点数轴上对应于有界数列的点nx都落在闭区间都落在闭区间,MM 上上.有界有界无界无界定理定理1 1 收敛的数列必定有界收敛的数列必定有界. .证证,limaxnn 设设由定义由定义, 1
展开阅读全文