书签 分享 收藏 举报 版权申诉 / 27
上传文档赚钱

类型定积分在几何上的应用-ppt课件.ppt

  • 上传人(卖家):三亚风情
  • 文档编号:2695466
  • 上传时间:2022-05-18
  • 格式:PPT
  • 页数:27
  • 大小:1.95MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《定积分在几何上的应用-ppt课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    积分 几何 应用 ppt 课件
    资源描述:

    1、定积分的元素法一、什么问题可以用定积分解决一、什么问题可以用定积分解决 ? 二二 、如何应用定积分解决问题、如何应用定积分解决问题 ? 1ppt课件表示为niiixfU10)(lim1) 所求量 U 是与区间a , b上的某函数 f (x) 有关的2) U 对区间 a , b 具有可加性 , 即可通过“分割分割, 近似近似, 求和求和, 取极限取极限”baxxfd)(niiixf10)(lim定积分定义一个整体量 ;2ppt课件第一步第一步 利用“化整为零 , 以常代变” 求出局部量的微分表达式xxfUd)(d第二步第二步 利用“ 积零为整 , 无限累加 ” 求出整体量的积分表达式Uxxfba

    2、d)(这种分析方法成为元素法元素法 (或微元法微元法)近似值精确值3ppt课件四、四、 旋转体的侧面积旋转体的侧面积三、已知平行截面面积函数的三、已知平行截面面积函数的 立体体积立体体积一、一、 平面图形的面积平面图形的面积二、二、 平面曲线的弧长平面曲线的弧长 定积分在几何学上的应用 4ppt课件1. 直角坐标情形直角坐标情形设曲线)0()(xfy与直线)(,babxax及 x 轴所围曲则xxfAd)(dxbaoy)(xfy xxxdxxfAbad)(边梯形面积为 A ,右图所示图形面积为 yobxa)(2xfy )(1xfy xxfxfAbad)()(21xxxd5ppt课件xxy22oy

    3、4 xyxy22与直线的面积 . 解解: 由xy224 xy得交点)4,8( , )2,2()4,8(yyyAd)4(d221184 xy所围图形)2,2(221yy442361y为简便计算, 选取 y 作积分变量,则有yyyd42A6ppt课件abxoyx12222byax解解: 利用对称性 , xyAdd所围图形的面积 . 有axyA0d4利用椭圆的参数方程)20(sincosttbytax应用定积分换元法得024Atbsinttad)sin(202dsin4ttbaba4212ba当 a = b 时得圆面积公式xxd7ppt课件)cos1 (, )sin(tayttax)0( a的一拱与

    4、 x 轴所围平面图形的面积 .)cos1 (tadA解解:ttad)cos1 ( ttad)cos1 (2022ttad2sin42042)2(tu 令uuadsin8042uuadsin162042216a4321223 a20Axyoa28ppt课件,0)(, ,)(C设求由曲线)(r及,射线围成的曲边扇形的面积 .)(r x d在区间,上任取小区间d,则对应该小区间上曲边扇形面积的近似值为d)(21d2A所求曲边扇形的面积为d)(212A 9ppt课件对应 从 0 变解解:)0( aarxa 2o dd)(212a20A22a331022334a到 2 所围图形面积 . 10ppt课件2

    5、coscos21)2cos1 (21aa2oxyd)cos1 (2122a与圆所围图形的面积 . 解解: 利用对称性 ,)0()cos1 (aar2221aA22221aad)2cos21cos223(所求面积)243(2122aa22245aa ar 211ppt课件定义定义: 若在弧 AB 上任意作内接折线 ,0M1iMiMnMAByox当折线段的最大边长 0 时, 折线的长度趋向于一个确定的极限 ,此极限为曲线弧 AB 的弧长 , 即并称此曲线弧为可求长的.iiMM1定理定理: 任意光滑曲线弧都是可求长的.ni 10lims则称12ppt课件sdyxabo)()(bxaxfy)(xfy

    6、弧长元素(弧微分) :xxxdxyd12因此所求弧长xysbad12xxfbad)(1222)(d)(ddyxs13ppt课件)()()(ttytx弧长元素(弧微分) :因此所求弧长tttsd)()(22tttd)()(2222)(d)(ddyxs14ppt课件)()( rr,sin)(,cos)(ryrx令因此所求弧长d)()(22rrsd)()(22yxd)()(22rr则得sd弧长元素(弧微分) :15ppt课件ttyxdcos2解解:,0cosx22xxysd1222的弧长.xxd)cos(12202xxd2cos22200sin22222x416ppt课件)cos1 ()sin(ta

    7、yttax)0( a一拱)20(t的弧长 .解解:tstytxd)()(d2dd2dd )cos1 (22tata22sintdttad)cos1 (2ttad2sin2ttasd2sin2202cos22ta02a8xyoa217ppt课件设所给立体垂直于x 轴的截面面积为A(x), ,)(baxA在则对应于小区间d,xxx的体积元素为xxAVd)(d因此所求立体体积为xxAVbad)(xabxxxd)(xA上连续,18ppt课件xyoabxyoab)(xfy 2)(xf轴旋转一周围成的立体体积时, 有轴绕xbxaxfy)()(xdbxaV 当考虑连续曲线段)()(dycyx绕 y 轴旋转一

    8、周围成的立体体积时,有2)(yyddycV xxoy)(yxcdy19ppt课件a2柱壳体积xxxdy也可按柱壳法求出yVyx2柱面面积xyxd2)cos1 ()sin(tayttaxxyxVayd2202)sin(tta)cos1 (ta22td0220ppt课件并与底面交成 角,222Ryx解解: 如图所示取坐标系, 则圆的方程为垂直于x 轴 的截面是直角三角形,其面积为tan)(21)(22xRxA)(RxRRxxRV022dtan)(2123231tan2xxR0Rtan323R利用对称性计算该平面截圆柱体所得立体的体积 .oRxyx21ppt课件xyoab设平面光滑曲线, ,)(1b

    9、aCxfy求上的圆台的侧面积位于d,xxxsySd2d积分后得旋转体的侧面积xxfxfSbad)(1)(22,0)(xf且它绕 x 轴旋转一周所得到的旋转曲面的侧面积 .取侧面积元素:)(2xfxxfd)(12xyoab)(xfy abx22ppt课件xyo)(xfy abxsySd2d侧面积元素xyd2sddx2dy x的线性主部 .若光滑曲线由参数方程)()()(ttytx给出, 则它绕 x 轴旋转一周所得旋转体的不是薄片侧面积S 的 )(2ttttd)()(22S侧面积为23ppt课件xRyo上绕在,21222RRxxxRyxx 轴旋转一周所得的球台的侧面积 S .解解: 对曲线弧,21

    10、22xxxxRy应用公式得212xxS22xR 2 122xRxxd21d2xxxR)(212xxR当球台高 h2R 时, 得球的表面积公式24RS1x2xozyx24ppt课件一周所得的旋转体的表面积 S .解解: 利用对称性2022Sta3sin22 ttasincos32td2042dcossin12tttata52sin5112022512attacossin32绕 x 轴旋转 taytax33sin,cos25ppt课件1. 平面图形的面积边界方程参数方程极坐标方程2. 平面曲线的弧长曲线方程参数方程极坐标方程22)(d)(ddyxs弧微分:d)()(d22rrs直角坐标方程上下限按顺时针方向确定直角坐标方程注意注意: 求弧长时积分上下限必须上大下小21d)()(tttttAd)(212A26ppt课件baxxAVd)(旋转体的体积2)(yxA绕 x 轴 :4. 旋转体的侧面积sySd2d侧面积元素为(注意在不同坐标系下 ds 的表达式)yxxA2)(绕 y 轴 :(柱壳法)(xyy ,)(轴旋转绕xxyy 27ppt课件

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:定积分在几何上的应用-ppt课件.ppt
    链接地址:https://www.163wenku.com/p-2695466.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库