书签 分享 收藏 举报 版权申诉 / 85
上传文档赚钱

类型面板数据分析方法-ppt课件.ppt

  • 上传人(卖家):三亚风情
  • 文档编号:2694600
  • 上传时间:2022-05-18
  • 格式:PPT
  • 页数:85
  • 大小:3.65MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《面板数据分析方法-ppt课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    面板 数据 分析 方法 ppt 课件
    资源描述:

    1、面板数据分析方法面板数据分析方法1ppt课件2ppt课件BaltagiBaltagi著著 白仲林主译白仲林主译3ppt课件4ppt课件5ppt课件第一节第一节 面板数据的基本问题面板数据的基本问题第二节第二节 面板数据的模型形式面板数据的模型形式第三节第三节 面板数据模型的估计方法面板数据模型的估计方法6ppt课件第一节第一节 面板数据的基本问题面板数据的基本问题 一、面板数据的定义一、面板数据的定义二、面板数据的分类二、面板数据的分类三、面板数据的特点三、面板数据的特点7ppt课件一、面板数据的定义一、面板数据的定义 面板数据面板数据(panel data)是指由变量)是指由变量y关于关于N

    2、个不个不同对象的同对象的T个观测期所得到的二维结构数据,记为个观测期所得到的二维结构数据,记为yit,其中,其中,i表示表示N个不同对象(如国家、地区、行业、企个不同对象(如国家、地区、行业、企业或消费者等,一般称之为第业或消费者等,一般称之为第i个个体),个个体),t表示表示T个观个观测期。测期。8ppt课件面板数据是二维结构数据面板数据是二维结构数据 时间序列数据或截面数据都是一维数据。时间序列时间序列数据或截面数据都是一维数据。时间序列数据是变量按时间得到的数据;截面数据是变量在固定数据是变量按时间得到的数据;截面数据是变量在固定时点的一组数据。时点的一组数据。面板数据是同时在时间和截面

    3、上取得面板数据是同时在时间和截面上取得的二维数据。的二维数据。所以所以 ,面板数据,面板数据(panel data)也称作时间也称作时间序列与截面混合数据序列与截面混合数据(pooled time series and cross section data)。面板数据是截面上个体在不同时点的重。面板数据是截面上个体在不同时点的重复观测数据。复观测数据。9ppt课件面板数据是二维结构数据面板数据是二维结构数据 Panel原指对一组固定调查对象的多次观测,近年原指对一组固定调查对象的多次观测,近年来来panel data已经成为专业术语。已经成为专业术语。 面板数据从横截面看面板数据从横截面看(c

    4、ross section),是由若干个体,是由若干个体(entity,unit,individual)在某一时点构成的截面观测值,在某一时点构成的截面观测值,从纵剖面从纵剖面(longitudinal section)看每个个体都是一个时间看每个个体都是一个时间序列。序列。10ppt课件数据结构的二维性数据结构的二维性NTTTNNXXXTXXXXXXNit2122212121112121时间序列数据横截面数据变量变量X的面板数据结构的面板数据结构11ppt课件面板数据是二维结构数据面板数据是二维结构数据12ppt课件13ppt课件14ppt课件第一节第一节 面板数据的基本问题面板数据的基本问题

    5、 一、面板数据的定义一、面板数据的定义二、面板数据的分类二、面板数据的分类三、面板数据的特点三、面板数据的特点15ppt课件二、面板数据的分类二、面板数据的分类 1.1.短面板与长面板短面板与长面板 短面板短面板(short panel):时间:时间T较小,而个体数较小,而个体数N较大。较大。 长面板长面板(long panel):时间:时间T较大,而个体数较大,而个体数N较小。较小。16ppt课件二、面板数据的分类二、面板数据的分类 2.2.微观面板数据与宏观面板数据微观面板数据与宏观面板数据 微观面板数据微观面板数据一般指一段时期内不同个体或者家庭一般指一段时期内不同个体或者家庭的调查数据

    6、,其数据中往往个体单位较多,即的调查数据,其数据中往往个体单位较多,即N较大(较大(通常均为几百或上千)而时期数通常均为几百或上千)而时期数T较短(最短为两个时较短(最短为两个时期,最长一般不超过期,最长一般不超过20个时期)。个时期)。17ppt课件二、面板数据的分类二、面板数据的分类 2.2.微观面板数据与宏观面板数据微观面板数据与宏观面板数据 宏观面板数据宏观面板数据通常为一段时间内不同国家或地区的通常为一段时间内不同国家或地区的数据集合,其个体单位数量数据集合,其个体单位数量N不大(一般为不大(一般为7-200)而时)而时期数期数T较长(一般为较长(一般为20-60年)。年)。18pp

    7、t课件二、面板数据的分类二、面板数据的分类 3.3.动态面板与静态面板动态面板与静态面板 在面板模型中,如果解释变量包含被解释变量的滞在面板模型中,如果解释变量包含被解释变量的滞后值,则称为后值,则称为“动态面板动态面板”(dynamic panel);反之,;反之,则称为则称为“静态面板静态面板”(static panel)。19ppt课件二、面板数据的分类二、面板数据的分类 4.4.平衡面板数据与非平衡面板数据平衡面板数据与非平衡面板数据 如果在面板数据中,每个时期在样本中的个体完全如果在面板数据中,每个时期在样本中的个体完全一样,则称为一样,则称为“平衡面板数据平衡面板数据”(balan

    8、ced panel);然而;然而,有时某些个体的数据可能缺失,或者新的个体后来才,有时某些个体的数据可能缺失,或者新的个体后来才加入到调查中来,在这种情况下,每个时期观测到的个加入到调查中来,在这种情况下,每个时期观测到的个体不完全相同,则称为体不完全相同,则称为“非平衡面板数据非平衡面板数据”(unbalanced panel)。20ppt课件第一节第一节 面板数据的基本问题面板数据的基本问题 一、面板数据的定义一、面板数据的定义二、面板数据的分类二、面板数据的分类三、面板数据的特点三、面板数据的特点21ppt课件三、面板数据的特点三、面板数据的特点 1.由于观测值的增多,可以增加估计量的抽

    9、样精度。由于观测值的增多,可以增加估计量的抽样精度。 由于同时有截面维度与时间维度,通常面板数据的由于同时有截面维度与时间维度,通常面板数据的样本容量更大,从而可以提高估计的精确度。样本容量更大,从而可以提高估计的精确度。 面板数据提供面板数据提供“更加有信息价值的数据,变量增加更加有信息价值的数据,变量增加变异性,变量之间的共线性削弱了,并且提高了自由度变异性,变量之间的共线性削弱了,并且提高了自由度和有效性。和有效性。22ppt课件三、面板数据的特点三、面板数据的特点 2.提供更多个体动态行为的信息。提供更多个体动态行为的信息。 由于面板数据同时有横截面与时间两个维度,有时由于面板数据同时

    10、有横截面与时间两个维度,有时可以解决单独的截面数据或时间序列数据所不能解决的可以解决单独的截面数据或时间序列数据所不能解决的问题,对面板数据进行回归既可以像回归分析截面数据问题,对面板数据进行回归既可以像回归分析截面数据一样捕获个体间的差异变化,又可以研究个体随时间的一样捕获个体间的差异变化,又可以研究个体随时间的变化情况。变化情况。23ppt课件三、面板数据的特点三、面板数据的特点 2.提供更多个体动态行为的信息。提供更多个体动态行为的信息。 案例:考虑如何区分规模效应与技术进步对企业生产效案例:考虑如何区分规模效应与技术进步对企业生产效率的影响。对于截面数据来说,由于没有时间维度,故率的影

    11、响。对于截面数据来说,由于没有时间维度,故无法观测到技术进步。然而,对于单个企业的时间序列无法观测到技术进步。然而,对于单个企业的时间序列数据来说,我们无法区分其生产效率的提高究竟有多少数据来说,我们无法区分其生产效率的提高究竟有多少是由于规模扩大,有多少是由于技术进步。是由于规模扩大,有多少是由于技术进步。 24ppt课件三、面板数据的特点三、面板数据的特点 3.可以解决遗漏变量问题。可以解决遗漏变量问题。 遗漏变量偏差是一个普遍存在的问题。虽然可以用遗漏变量偏差是一个普遍存在的问题。虽然可以用工具变量法解决,但有效的工具变量常常很难找。遗漏工具变量法解决,但有效的工具变量常常很难找。遗漏变

    12、量常常是由于不可观测的个体差异或变量常常是由于不可观测的个体差异或“异质性异质性”造成造成的,如果这种个体差异的,如果这种个体差异“不随时间而改变不随时间而改变”,则面板数,则面板数据提供了解决遗漏变量问题的又一利器。据提供了解决遗漏变量问题的又一利器。25ppt课件三、面板数据的特点三、面板数据的特点 4.带来一些问题。带来一些问题。 (1)由于综合了两种数据类型,面板数据分析方法相对)由于综合了两种数据类型,面板数据分析方法相对更加复杂。更加复杂。 (2)由于同一个体不同时期的数据一般存在自相关,样)由于同一个体不同时期的数据一般存在自相关,样本数据通常不满足独立同分布的假定。本数据通常不

    13、满足独立同分布的假定。 (3)面板数据的收集成本通常较高,不易获得。)面板数据的收集成本通常较高,不易获得。26ppt课件27ppt课件2,0003,0004,0005,0006,0007,0008,0009,00010,00011,0003,0005,0007,0009,00011,00013,000CP_1996CP_1997CP_1998CP_1999CP_2000CP_2001CP_2002IP2,0003,0004,0005,0006,0007,0008,0009,00010,00011,0003,0005,0007,0009,00011,00013,000CP_IAHCP_IBJC

    14、P_IFJCP_IHBCP_IHLJCP_IJLCP_IJSCP_IJXCP_ILNCP_INMGCP_ISDCP_ISHCP_ISXCP_ITJCP_IZJIP28ppt课件2000300040005000600070008000900010000110002000400060008000100001200014000IPCROSSCP1996CP1997CP1998CP1999CP2000CP2001CP2002IP用原变量建模还是用对数变量建模用原变量建模还是用对数变量建模? ?7.88.08.28.48.68.89.09.29.48.08.28.48.68.89.09.29.49.6L

    15、OG(IPCROSS)LOG(CP1996)LOG(CP1997)LOG(CP1998)LOG(CP1999)LOG(CP2000)LOG(CP2001)LOG(CP2002)29ppt课件2000300040005000600070008000900010000110002000400060008000100001200014000cp_bjcp_nmgIP_I2000300040005000600070008000900010000110002000400060008000100001200014000CP_1996CP_2002IP_T 30ppt课件第一节第一节 面板数据的基本问题面板

    16、数据的基本问题第二节第二节 面板数据的模型形式面板数据的模型形式第三节第三节 面板数据模型的估计方法面板数据模型的估计方法31ppt课件其中:其中: 和和 分别表示居民的消费与收入。分别表示居民的消费与收入。 反映不随时间变化的个体上的差异性反映不随时间变化的个体上的差异性(个体效应)(个体效应) 反映不随个体变化的时间上的差异性反映不随个体变化的时间上的差异性(时间效应)(时间效应)例例1:居民消费行为与收入的关系:居民消费行为与收入的关系itititYC10ittiituitCitY(1,2,;1,2,)iN tTLLit32ppt课件例例2. 农村居民收入分析农村居民收入分析ititit

    17、ititRCIRLTCSCPIC3210)(ln)ln(ittiituNi, 2 , 1Tt, 2 , 1it面板数据:多个观测对象的时间序列数据所组成的样本数据。反映不随个体变化的时间上的差异性, 被称为时间效应。反映不随时间变化的个体上的差异性, 被称为个体效应33ppt课件第二节第二节 面板数据的模型形式面板数据的模型形式 一、个体效应模型一、个体效应模型二、固定效应模型二、固定效应模型三、随机效应模型三、随机效应模型四、双向效应模型四、双向效应模型34ppt课件其中:其中: 为为 的矩阵,的矩阵, 为为k个解释变量的第个解释变量的第i个个体在个个体在 第第t时期的观测值,为时期的观测值

    18、,为 的矩阵。的矩阵。zi为不随时间为不随时间 而变的个体特征,即而变的个体特征,即 。扰动项由。扰动项由 两部分构成,被称为两部分构成,被称为“复合扰动项复合扰动项”。 个体效应模型个体效应模型(individual-specific effects model)假定假定样本中每个个体的回归方程斜率相同,但截距项不同。样本中每个个体的回归方程斜率相同,但截距项不同。ititiiityxzu1k 一、个体效应模型一、个体效应模型,itizzt()iitu(1,2,;1,2,)iN tTLLitx1k35ppt课件复合扰动项:复合扰动项:不可观测的随机变量不可观测的随机变量 是代表个体异质性的截

    19、距项。是代表个体异质性的截距项。 为随个体与时间而变的扰动项。为随个体与时间而变的扰动项。假定假定 为独立同分布的,且与为独立同分布的,且与 不相关。不相关。 ititiiityxzuiu个体效应模型个体效应模型()iitu(1,2,;1,2,)iN tTLLititiu36ppt课件1.它表示不可观测的个体特殊效应、潜在变量、不可观测它表示不可观测的个体特殊效应、潜在变量、不可观测 的异质性等。考虑到个人或者任一家庭、企业都具有很的异质性等。考虑到个人或者任一家庭、企业都具有很 难被调查者观察到的独有的特征,这种特殊效应在整个难被调查者观察到的独有的特征,这种特殊效应在整个 时间范围内时间范

    20、围内 是保持不变的。是保持不变的。2.某些场合下将其视为常数,但这也是随机变量的特例,某些场合下将其视为常数,但这也是随机变量的特例, 即退化的随机变量。即退化的随机变量。 ititiiityxzuiu对于个体效应对于个体效应 :Tt, 2 , 137ppt课件取对数后,模型变为:取对数后,模型变为:在这里,在这里, 代表着企业不随时间变化并且不可观测到的代表着企业不随时间变化并且不可观测到的特殊效应,它表示一个企业的管理才能、员工素质等。特殊效应,它表示一个企业的管理才能、员工素质等。例:一个企业的柯布例:一个企业的柯布-道格拉斯生产函数道格拉斯生产函数iitititFLAKY21iitit

    21、itFLKAYlnlnlnlnln21iFln38ppt课件1.如果如果 与所有解释变量与所有解释变量 均不相关,则进一步称之均不相关,则进一步称之 为为“随机效应模型随机效应模型”(Random Effects Model,RE)。2.如果如果 与某个解释变量相关,则进一步称之为与某个解释变量相关,则进一步称之为“固定效固定效 应模型应模型(Fixed Effects Model,FE)。ititiiityxzuiu个体效应个体效应 与解释变量与解释变量 的相关性:的相关性:itxiu),(iitzxiu39ppt课件第二节第二节 面板数据的模型形式面板数据的模型形式 一、个体效应模型一、个

    22、体效应模型二、固定效应模型二、固定效应模型三、随机效应模型三、随机效应模型四、双向效应模型四、双向效应模型40ppt课件 固定效应模型形式同样与个体效应模型相同,但是在固定效应模型形式同样与个体效应模型相同,但是在固定效应模型中假定固定效应模型中假定 为需要估计的固定参数,它可以为需要估计的固定参数,它可以与解释变量之间存在相关性。与解释变量之间存在相关性。 固定效应模型意味着存在内生解释变量。在固定效应模型意味着存在内生解释变量。在 随随时间变化的情况下,固定效应模型所得到的第时间变化的情况下,固定效应模型所得到的第j个解释个解释变量的边际效应估计量同样是一致的。然而,同随机效变量的边际效应

    23、估计量同样是一致的。然而,同随机效应模型相比,固定效应应模型相比,固定效应 模型中存在参数过多和自由度损模型中存在参数过多和自由度损失过多等问题。失过多等问题。二、固定效应模型二、固定效应模型iuitjx,41ppt课件第二节第二节 面板数据的模型形式面板数据的模型形式 一、个体效应模型一、个体效应模型二、固定效应模型二、固定效应模型三、随机效应模型三、随机效应模型四、双向效应模型四、双向效应模型42ppt课件 对于随机效应模型,一般采用可行的广义最小二乘法对于随机效应模型,一般采用可行的广义最小二乘法(FGLS)对其进行估计,由于对其进行估计,由于 被假定为随机的,无须估被假定为随机的,无须

    24、估计,计, 因此使用随机效应模型可以一次得到所有系数的估因此使用随机效应模型可以一次得到所有系数的估计值从而进行边际分析。但是,如果随机效应模型选取计值从而进行边际分析。但是,如果随机效应模型选取不恰当所得到的参数估计值将是不一致的。不恰当所得到的参数估计值将是不一致的。 随机效应模型形式与个体效应模型相同,在随机效应随机效应模型形式与个体效应模型相同,在随机效应模型中假定模型中假定 是完全随机的,即是完全随机的,即 与解释变量无关。与解释变量无关。三、随机效应模型三、随机效应模型iuiuiu43ppt课件第二节第二节 面板数据的模型形式面板数据的模型形式 一、个体效应模型一、个体效应模型二、

    25、固定效应模型二、固定效应模型三、随机效应模型三、随机效应模型四、双向效应模型四、双向效应模型44ppt课件 双向效应模型双向效应模型(two-way-effects model)也可称为双因也可称为双因素误差模型,它将未观测到的个体效应和时间效应引入素误差模型,它将未观测到的个体效应和时间效应引入模型,是个体效应模型的标准延伸。模型,是个体效应模型的标准延伸。这里这里t t仅随时间变化而不随个体变化,表示所有未包仅随时间变化而不随个体变化,表示所有未包含在回归模型中的发生在特定时期的影响,如地震对某含在回归模型中的发生在特定时期的影响,如地震对某一时期企业生产的影响。一时期企业生产的影响。四、

    26、双向效应模型四、双向效应模型ititiitityxzu45ppt课件双向固定效应模型双向固定效应模型(Two-way FE)对于短面板数据,通常将时间效应看做固定效应,如果个对于短面板数据,通常将时间效应看做固定效应,如果个体效应模型中含有时间趋势项或包含时间虚拟变量,则称体效应模型中含有时间趋势项或包含时间虚拟变量,则称之为双向固定效应模型。之为双向固定效应模型。(1)在固定效应模型中引入时间趋势项)在固定效应模型中引入时间趋势项t,它仅依时间,它仅依时间而变化,而不依个体而变。而变化,而不依个体而变。(2)对每个时期定义一个虚拟变量,然后把)对每个时期定义一个虚拟变量,然后把(T-1)个时

    27、间个时间虚拟变量包括在回归方程中(未包括的时间虚拟变量虚拟变量包括在回归方程中(未包括的时间虚拟变量即为基期)。即为基期)。46ppt课件第一节第一节 面板数据的基本问题面板数据的基本问题第二节第二节 面板数据的模型形式面板数据的模型形式第三节第三节 面板数据模型的估计方法面板数据模型的估计方法47ppt课件第三节第三节 面板数据模型的估计方法面板数据模型的估计方法 一、混合最小二乘估计一、混合最小二乘估计二、固定效应模型的估计方法二、固定效应模型的估计方法三、随机效应模型的估计方法三、随机效应模型的估计方法48ppt课件一、混合最小二乘估计一、混合最小二乘估计(Pooled OLS)假定所有

    28、个体都拥有完全一样的回归方程:假定所有个体都拥有完全一样的回归方程:其中,其中,xit不包括常数项,这样,就可以直接把所有数据不包括常数项,这样,就可以直接把所有数据放在一起,像对待横截面数据那样进行放在一起,像对待横截面数据那样进行OLS回归,故被回归,故被称为称为“混合回归混合回归”(pooled OLS)。itiititzxy49ppt课件人均消费对人均可支人均消费对人均可支配收入的弹性系数是配收入的弹性系数是0.9694。人均消费对人均可支人均消费对人均可支配收入的边际系数是配收入的边际系数是0.9694 CPit /IPit对案例对案例1人均消费人均消费CP与收入与收入IP的面板数据

    29、进行混合估计:的面板数据进行混合估计:50ppt课件注意:注意:1.由于面板数据的特点,虽然通常可以假设不同个体之由于面板数据的特点,虽然通常可以假设不同个体之间的扰动项相互独立,但同一个体在不同时期的扰动项间的扰动项相互独立,但同一个体在不同时期的扰动项之间往往存在自相关。此时,对标准差的估计应该使用之间往往存在自相关。此时,对标准差的估计应该使用聚类稳健的标准差聚类稳健的标准差(cluster-robust standard error),而所,而所谓聚类就是由每个个体不同时期的所有观测值所组成。谓聚类就是由每个个体不同时期的所有观测值所组成。同一聚类(个体)的观测值允许存在相关性,而不同

    30、聚同一聚类(个体)的观测值允许存在相关性,而不同聚类(个体)的观测值则不相关。类(个体)的观测值则不相关。51ppt课件注意:注意:2.混合回归的基本假设是不存在个体效应。对于这个假混合回归的基本假设是不存在个体效应。对于这个假设必须进行统计检验。由于个体效应以两种不同的形态设必须进行统计检验。由于个体效应以两种不同的形态存在(即随机效应与固定效应),因此需要分别对其进存在(即随机效应与固定效应),因此需要分别对其进行检验。行检验。52ppt课件第三节第三节 面板数据模型的估计方法面板数据模型的估计方法 一、混合最小二乘估计一、混合最小二乘估计二、固定效应模型的估计方法二、固定效应模型的估计方

    31、法三、随机效应模型的估计方法三、随机效应模型的估计方法53ppt课件二、固定效应模型的估计方法二、固定效应模型的估计方法对于固定效应模型:对于固定效应模型:由于由于 被假定为需要估计的固定参数并允许与解释变被假定为需要估计的固定参数并允许与解释变量相关,因此,估计固定效应模型中的系数量相关,因此,估计固定效应模型中的系数 时便可以时便可以考虑通过变换模型形式从而消除这一不可观测到的个体考虑通过变换模型形式从而消除这一不可观测到的个体效应。效应。ititiiityxzuiu54ppt课件二、固定效应模型的估计方法二、固定效应模型的估计方法(一)组内估计(一)组内估计 对于固定效应模型,给定第对于

    32、固定效应模型,给定第i个个体,将方程个个体,将方程 两边对时间取平均可得两边对时间取平均可得 用原模型减去平均后的方程,可得其离差形式:用原模型减去平均后的方程,可得其离差形式:ititiiityxzuiiiiiuzxy)()(iitiitiitxxyy55ppt课件二、固定效应模型的估计方法二、固定效应模型的估计方法定义定义则则由于上式中已将由于上式中已将 消去,故只要消去,故只要 与与 不相关,则可不相关,则可以用以用OLS一致地估计一致地估计 ,称为,称为“固定效应估计量固定效应估计量”(Fixed Effects Estimator),记为,记为 。由于其主要使用了。由于其主要使用了每

    33、个个体的组内离差信息,故也称为每个个体的组内离差信息,故也称为“组内估计量组内估计量”(within estimator)。 )()(iitiitiitxxyyiitityyyiitit)(iititxxxitititxyiuitxitFE56ppt课件注意:注意: 即使个体特征即使个体特征 与解释变量与解释变量 相关,只要使用组相关,只要使用组内估计量,就可以得到一致估计,但在作离差转换的过内估计量,就可以得到一致估计,但在作离差转换的过程中,程中, 也被消掉了,故无法估计也被消掉了,故无法估计 。即。即 无法估计无法估计不随时间而变的变量的影响。不随时间而变的变量的影响。iuitxizFE

    34、57ppt课件注意:注意: 另外,为了保证另外,为了保证 与与 不相关,则要不相关,则要求第求第i个观测值满足严格外生性,即个观测值满足严格外生性,即 ,因为因为 中包含了所有中包含了所有 的信息。换言之,扰的信息。换言之,扰动项必须与各期的解释变量均不相关(而不仅仅是当期动项必须与各期的解释变量均不相关(而不仅仅是当期的解释变量),这是一个比较强的假定。的解释变量),这是一个比较强的假定。)(iit)(iitxx 0),(1iTiitxxEix),(1iTixx 58ppt课件二、固定效应模型的估计方法二、固定效应模型的估计方法(二)最小二乘虚拟变量模型(二)最小二乘虚拟变量模型(LSDV)

    35、 对于固定效应模型:对于固定效应模型: 在方程中引入在方程中引入(n-1)个虚拟变量(如果没有截距项,则个虚拟变量(如果没有截距项,则引入引入n个虚拟变量)来代表不同的个体,则可以得到与个虚拟变量)来代表不同的个体,则可以得到与上述离差模型同样的结果,称为上述离差模型同样的结果,称为“最小二乘虚拟变量模最小二乘虚拟变量模型型”(Least Square Dummy Variable Model)。ititiiityxzu59ppt课件虚拟变量回归的特点虚拟变量回归的特点 使用使用LSDV方法所给出的估计值,与我们用组内方法所给出的估计值,与我们用组内估计方法得到的估计值恰好一样,而且标准误和其

    36、他估计方法得到的估计值恰好一样,而且标准误和其他主要统计量也是一样。因此,固定效应估计量可以从主要统计量也是一样。因此,固定效应估计量可以从虚拟变量回归得到。虚拟变量回归得到。 从从LSDV方法算出的可决系数的值通常都比较高,方法算出的可决系数的值通常都比较高,这是因为我们对每一横截面单位都包含了一个虚拟变这是因为我们对每一横截面单位都包含了一个虚拟变量,以致能解释数据中的变异的大部分。量,以致能解释数据中的变异的大部分。iu60ppt课件61ppt课件从结果看,北京、上海、浙江是自发消费(消费函数截距)最大的3个地区。62ppt课件注意:注意: 使用使用LSDV方法虽然可以得到对个体异质性方

    37、法虽然可以得到对个体异质性 的的估计,但是会损失很大的自由度,并在估计估计,但是会损失很大的自由度,并在估计(n-1)个额外个额外的参数时,大量的虚拟变量会加剧回归方程的多重共线的参数时,大量的虚拟变量会加剧回归方程的多重共线性问题,也不能估计非时变性问题,也不能估计非时变(time-constant)变量效应。变量效应。 此外,此外,LSDV方法也不能解决内生性问题。方法也不能解决内生性问题。iu63ppt课件LSDV的估计效果的估计效果 Islam(2000)运用蒙特卡罗模拟研究了一些关于经运用蒙特卡罗模拟研究了一些关于经济增长收敛方面的面板数据估计。研究发现,如果以济增长收敛方面的面板数

    38、据估计。研究发现,如果以小样本偏差和预测误差的标准方差来判断的话,小样本偏差和预测误差的标准方差来判断的话,LSDV估计在小样本上的估计结果最好,其估计效果估计在小样本上的估计结果最好,其估计效果甚至比甚至比GMM估计和工具变量估计和工具变量(IV)估计都更好。估计都更好。64ppt课件 Islam (2000)对此提供的一种理论解释是,对此提供的一种理论解释是,GMM和和IV估计在小样本上估计效果不好的原因是因为,这估计在小样本上估计效果不好的原因是因为,这两种方法的优点都依赖于回归估计中所能选择到的最两种方法的优点都依赖于回归估计中所能选择到的最优权重矩阵,而这一权重在回归中可能会收到数据

    39、噪优权重矩阵,而这一权重在回归中可能会收到数据噪声。声。LSDV的估计效果的估计效果65ppt课件二、固定效应模型的估计方法二、固定效应模型的估计方法(三)一阶差分法(三)一阶差分法 对于固定效应模型,给定第对于固定效应模型,给定第i个个体,将方程个个体,将方程 两边进行一阶差分,以消去个体效应,得两边进行一阶差分,以消去个体效应,得 对上述差分形式的方程使用对上述差分形式的方程使用OLS就可以得到就可以得到“一阶差一阶差分分估计量估计量”,记为,记为 。ititiiityxzu,1,1,1()()iti titi titi tyyxxFD66ppt课件组内估计量与一阶差分估计量组内估计量与一

    40、阶差分估计量由于由于 不再出现在差分方程中,只要扰动项的一阶差分不再出现在差分方程中,只要扰动项的一阶差分 与解释变量的一阶差分与解释变量的一阶差分 不相关,则不相关,则 是一致的。此一致性条件比保证是一致的。此一致性条件比保证 一致的严格外生一致的严格外生性假定更弱,这是性假定更弱,这是 的主要优点。的主要优点。,1,1,1()()iti titi titi tyyxxFDiu, 1()iti t,1()iti txxFEFD67ppt课件组内估计量与一阶差分估计量组内估计量与一阶差分估计量 组内估计和一阶差分都假设不可观测的个体效应与组内估计和一阶差分都假设不可观测的个体效应与解释变量相关

    41、,两种估计方法在解释变量相关,两种估计方法在T=2时产生相同的估计时产生相同的估计量和推断。当总体时期量和推断。当总体时期T2时,在时,在 序列不相关,独立序列不相关,独立同分布的情况下,组内估计量同分布的情况下,组内估计量 比一阶差分估计量比一阶差分估计量 更有效率。因此,在实践上,主要使用更有效率。因此,在实践上,主要使用 ,而较少用,而较少用 itFEFDFEFD68ppt课件第三节第三节 面板数据模型的估计方法面板数据模型的估计方法 一、混合最小二乘估计一、混合最小二乘估计二、固定效应模型的估计方法二、固定效应模型的估计方法三、随机效应模型的估计方法三、随机效应模型的估计方法69ppt

    42、课件三、随机效应模型的估计方法三、随机效应模型的估计方法对于回归方程:对于回归方程:随机效应模型假定随机效应模型假定 与解释变量与解释变量 均不相关,故均不相关,故OLS是一致的。然而,由于扰动项由是一致的。然而,由于扰动项由 组成,不是组成,不是球型扰动项(同方差、无自相关),因此,球型扰动项(同方差、无自相关),因此,OLS不是最不是最有效率的。有效率的。ititiiityxzuiu),(iitzx()iitu70ppt课件由于由于 的存在,同一个体不同时期的扰动项之间存在自的存在,同一个体不同时期的扰动项之间存在自相关,相关,iu71ppt课件72ppt课件具体来说,用具体来说,用OLS

    43、来估计以下来估计以下“广义离差广义离差” (quasi-demeaned)模型,模型,73ppt课件组间估计组间估计(Between Estimator)74ppt课件75ppt课件究竟该用固定效应还是随机效应模型?究竟该用固定效应还是随机效应模型? 当我们在日常研究中选取模型形式时,不能确定当我们在日常研究中选取模型形式时,不能确定未观测到的个体效应是否与解释变量相关,因而不能未观测到的个体效应是否与解释变量相关,因而不能恰当地在固定效应模型和随机效应模型之间进行选取。恰当地在固定效应模型和随机效应模型之间进行选取。错误选取模型类型,将影响我们的参数估计量等从而错误选取模型类型,将影响我们的

    44、参数估计量等从而影响对具体问题的分析。在处理面板数据时,究竟该影响对具体问题的分析。在处理面板数据时,究竟该使用固定效应模型还是随机效应模型是一个根本问题。使用固定效应模型还是随机效应模型是一个根本问题。76ppt课件Hausman检验检验原假设原假设H0: 与与 不相关(模型应设定为随机效应)不相关(模型应设定为随机效应) 备择假设备择假设H1: 与与 相关(模型设定为固定效应)相关(模型设定为固定效应) Hausman检验统计量:检验统计量: iu),(iitzxiu),(iitzx77ppt课件固定效应模型与随机效应模型哪个更好一些?固定效应模型与随机效应模型哪个更好一些? 随机效应模型

    45、的好处是节省自由度。对于从时间随机效应模型的好处是节省自由度。对于从时间和截面两方面看都存在较大变化的数据,随机效应模和截面两方面看都存在较大变化的数据,随机效应模型能明确地描述出误差来源的特征。型能明确地描述出误差来源的特征。 固定效应模型的好处是,很容易分析任意截面数固定效应模型的好处是,很容易分析任意截面数据所对应的应变量与全部截面数据对应的因变量均值据所对应的应变量与全部截面数据对应的因变量均值的差异程度。的差异程度。78ppt课件Wooldridge(2000) 在实际应用时,是选择固定效应模型还是选择随在实际应用时,是选择固定效应模型还是选择随机效应模型?一般的经验的做法是,如果研

    46、究者预期机效应模型?一般的经验的做法是,如果研究者预期建立面板数据模型推断样本空间的经济关系,则模型建立面板数据模型推断样本空间的经济关系,则模型设定为固定效应模型会更合理一些。否则,如果研究设定为固定效应模型会更合理一些。否则,如果研究样本是从总体随机抽样得到的,并且预期利用模型解样本是从总体随机抽样得到的,并且预期利用模型解释或推断总体的统计性质,则将模型设定为随机效应释或推断总体的统计性质,则将模型设定为随机效应模型比较合理。模型比较合理。79ppt课件古扎拉蒂(古扎拉蒂(2013)1.如果如果T(观测的时间点的数目)较大,且(观测的时间点的数目)较大,且N(横截面单(横截面单元的数量)

    47、较小,则通过固定效应模型和随机效应模元的数量)较小,则通过固定效应模型和随机效应模型估计的参数值之间很可能没什么差别。这时的选择型估计的参数值之间很可能没什么差别。这时的选择依据就是基于计算上的便利了。在这种情况下,固定依据就是基于计算上的便利了。在这种情况下,固定效应模型可能更加可取。效应模型可能更加可取。80ppt课件古扎拉蒂(古扎拉蒂(2013)2.在短面板(在短面板(N大且大且T小)中,两种方法的估计值可能有小)中,两种方法的估计值可能有显著差别。如果我们确信样本中横截面单元不是从一显著差别。如果我们确信样本中横截面单元不是从一个较大的样本中随机抽取的,那么固定效应模型是可个较大的样本

    48、中随机抽取的,那么固定效应模型是可取的。如果不是这种情况,统计推断是无条件的,则取的。如果不是这种情况,统计推断是无条件的,则随机效应模型是可取的。随机效应模型是可取的。81ppt课件古扎拉蒂(古扎拉蒂(2013)3.如果如果N较大而较大而T较小,并且随机效应模型的假设成立,较小,并且随机效应模型的假设成立,那么随机效应模型的估计量比固定效应模型的估计量那么随机效应模型的估计量比固定效应模型的估计量更加有效。更加有效。82ppt课件古扎拉蒂(古扎拉蒂(2013)4.与固定效应模型不同,随机效应模型可以估计时间不变与固定效应模型不同,随机效应模型可以估计时间不变性变量的系数,比如性别和种族这类变

    49、量。固定效应性变量的系数,比如性别和种族这类变量。固定效应模型确实可以控制住这些时间不变性变量,但是它不模型确实可以控制住这些时间不变性变量,但是它不能直接估计这些变量,这一点从能直接估计这些变量,这一点从LSDV估计模型中可以估计模型中可以清楚地得出。另一方面,固定效应模型可以控制住所清楚地得出。另一方面,固定效应模型可以控制住所有时间不变性变量,而随机效应模型只能控制住那些有时间不变性变量,而随机效应模型只能控制住那些在模型中可以被精确表达的时间不变性变量。在模型中可以被精确表达的时间不变性变量。83ppt课件各种估计量的性质各种估计量的性质 1.混合估计:混合估计: 如果斜率系数在所有主

    50、体间是不变的,而且误差如果斜率系数在所有主体间是不变的,而且误差项与解释变量无关,那么混合估计就是一致的。但是,项与解释变量无关,那么混合估计就是一致的。但是,对一个给定的个体而言,误差项在时间上很可能相关。对一个给定的个体而言,误差项在时间上很可能相关。所有,我们必须使用面板修正标准误来进行假设检验。所有,我们必须使用面板修正标准误来进行假设检验。否则,一般计算得出的标准误可能会被低估。否则,一般计算得出的标准误可能会被低估。84ppt课件各种估计量的性质各种估计量的性质 2.固定效应估计:固定效应估计: 即使潜在的模型是混合或随机效应模型,固定效即使潜在的模型是混合或随机效应模型,固定效应

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:面板数据分析方法-ppt课件.ppt
    链接地址:https://www.163wenku.com/p-2694600.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库