书签 分享 收藏 举报 版权申诉 / 22
上传文档赚钱

类型高中数学3-3《几何概型》课件苏教版必修.ppt

  • 上传人(卖家):三亚风情
  • 文档编号:2688105
  • 上传时间:2022-05-18
  • 格式:PPT
  • 页数:22
  • 大小:1.82MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《高中数学3-3《几何概型》课件苏教版必修.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    几何概型 高中数学 几何 课件 苏教版 必修 下载 _其他版本_数学_高中
    资源描述:

    1、 复复 习:习:1 1、古典概型的两个特点是什么、古典概型的两个特点是什么? ?P(A)=事件事件A包含基本事件的个数包含基本事件的个数基本事件的总个数基本事件的总个数 2 2、古典概型中事件、古典概型中事件A A的概率计算公式是什么的概率计算公式是什么? ?(1)试验中所有可能出现的基本事件有有限个试验中所有可能出现的基本事件有有限个(2)每个基本事件出现的可能性相等每个基本事件出现的可能性相等.引人:下图是卧室和书房地板的示意图,图中每一块方引人:下图是卧室和书房地板的示意图,图中每一块方砖除颜色外完全相同,甲壳虫砖除颜色外完全相同,甲壳虫 分别在卧室和书房中分别在卧室和书房中自由地飞来飞

    2、去,并随意停留在某块方砖上,问自由地飞来飞去,并随意停留在某块方砖上,问卧室卧室在哪个房间里,甲壳虫停留在黑砖上的概率在哪个房间里,甲壳虫停留在黑砖上的概率 大?大?卧室卧室书房书房假如甲壳虫在如图所示的地砖上自由的飞来假如甲壳虫在如图所示的地砖上自由的飞来飞去,并随意停留在某块方砖上(图中每一飞去,并随意停留在某块方砖上(图中每一块方砖除颜色外完全相同)块方砖除颜色外完全相同)(2)它最终停留在黑色方砖上的概率是多少?)它最终停留在黑色方砖上的概率是多少?(3)甲壳虫在如图所示的地板上最终停留在白色方砖上)甲壳虫在如图所示的地板上最终停留在白色方砖上的概率是多少?的概率是多少?(1 1)甲壳

    3、虫甲壳虫每次飞行每次飞行,停留在任何一块方砖上停留在任何一块方砖上的概率是否相同的概率是否相同?问题情境问题情境1.1.小猫钓鱼游戏中小猫钓鱼游戏中, ,若鱼钩落在红色的正方形内就可获得一等奖若鱼钩落在红色的正方形内就可获得一等奖, ,问获得一等奖的概率有多大问获得一等奖的概率有多大? ?若改为圆呢若改为圆呢? ?鱼钩落在大正方形内的任意点鱼钩落在大正方形内的任意点. .每个基本事件发生都是等可能的吗?每个基本事件发生都是等可能的吗?基本事件基本事件: :思考思考: :这个问题能否用古典概型的方法来求解吗这个问题能否用古典概型的方法来求解吗? ? 2.2.取一根长度为取一根长度为3m3m的绳子

    4、,拉直后在任意位置剪断,那么剪得两的绳子,拉直后在任意位置剪断,那么剪得两段的长度都不小于段的长度都不小于1m1m的概率有多大?的概率有多大?问题情境问题情境从从3m3m的绳子上的任意一点剪断的绳子上的任意一点剪断. .每个基本事件发生都是等可能的吗?每个基本事件发生都是等可能的吗?基本事件基本事件: :思考思考: :这个问题能否用古典概型的方法来求解吗这个问题能否用古典概型的方法来求解吗? ? 记记“剪得两段绳长都不小于剪得两段绳长都不小于1m”1m”为事件为事件A A. . 把绳子三等分把绳子三等分, ,于是当剪断位置处在中间一段于是当剪断位置处在中间一段上时上时, ,事件事件A A发生发

    5、生. .由于中间一段的长度等于绳由于中间一段的长度等于绳长的长的1/3.1/3.1 1P P( (A A) )3 3事事件件 发发生生的的概概率率A A对于问题对于问题2. 2.3m怎么办呢怎么办呢? ?问题情境问题情境3.3.射箭比赛的箭靶是涂有五个彩色的分环射箭比赛的箭靶是涂有五个彩色的分环. .从外从外向内为白色、黑色、蓝色、红色,靶心是金色向内为白色、黑色、蓝色、红色,靶心是金色, ,金色靶心叫金色靶心叫“黄心黄心”. .奥运会的比赛靶面直径为奥运会的比赛靶面直径为122cm,122cm,靶心直径为靶心直径为12.2cm.12.2cm.运动员在运动员在70m70m外射箭外射箭, ,假设

    6、假设每箭都能中靶每箭都能中靶, ,且射中靶面内任一点都是等且射中靶面内任一点都是等可能的可能的, ,那么射中黄心的概率是多少那么射中黄心的概率是多少? ?射中靶面直径为射中靶面直径为122cm122cm的的大圆内的任意一点大圆内的任意一点. .每个基本事件发生都是等可能的吗?每个基本事件发生都是等可能的吗?基本事件基本事件: :思考思考: :这个问题能否用古典概型的方法来这个问题能否用古典概型的方法来求解吗求解吗? ? 记记“射中黄心射中黄心”为事件为事件B,B,由于中靶点随机地由于中靶点随机地落在面积为落在面积为 的大圆内的大圆内, ,而当中靶点而当中靶点落在面积为落在面积为 的黄心内时的黄

    7、心内时, ,事件事件B B发生发生.2211 2 24c m22112.24cm 对于问题对于问题3. 3.2 22 21 1 1 12 2. .2 24 4P P( (B B) )0 0. .0 01 11 1 1 12 22 24 4事件事件B B发生的概率发生的概率 对于一个随机试验对于一个随机试验, ,我们将每个基本事件理解为从某个特定的几何区域内随我们将每个基本事件理解为从某个特定的几何区域内随机地取一点机地取一点, ,该区域中的每一个点被取到的机会都一样该区域中的每一个点被取到的机会都一样, ,而一个随机事件的发生则而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点

    8、理解为恰好取到上述区域内的某个指定区域中的点. .这里的区域可以是这里的区域可以是线段、平线段、平面图形、立体图形面图形、立体图形等等. .用这种方法处理随机试验用这种方法处理随机试验, ,称为称为几何概型几何概型. .几何概型的特点几何概型的特点: :(1)(1)基本事件有无限多个基本事件有无限多个;(2)(2)基本事件发生是等可能的基本事件发生是等可能的.构建数学. .D D的的测测度度d d的的测测度度P P( (A A) ) 一般地一般地, ,在几何区域在几何区域D D中随机地取一点中随机地取一点, ,记记“该点落在该点落在其内部一个区域其内部一个区域d d内内”为事件为事件A,A,则

    9、事件则事件A A发生的概率发生的概率: :你现在会求几何概型的概率了吗?你现在会求几何概型的概率了吗? D D的测度不为的测度不为0 0, ,当当D D分别是分别是线段、平面线段、平面图形、立体图形图形、立体图形等时等时, , 相应的相应的“测度测度”分别是分别是长长度、面积和体积度、面积和体积. .区域应指区域应指“开区域开区域” ” ,不包含边界点;在区域,不包含边界点;在区域D D内随内随机取点是指:该点落在机取点是指:该点落在D D内任何一处都是等可能的,内任何一处都是等可能的,落在任何部分的可能性只与该部分的测度成正比而与落在任何部分的可能性只与该部分的测度成正比而与其性状位置无关其

    10、性状位置无关探究探究: : 根据前面的情境问题根据前面的情境问题, ,你怎么来理解你怎么来理解测度测度这这个概念的个概念的? ?它可以表示哪些量它可以表示哪些量? ?注意注意: :想一想?想一想? 古典概型与几何概型的区别古典概型与几何概型的区别是什么是什么?古典概型与几何概型的区别古典概型与几何概型的区别 :每一个基本事件出现的可能性都相:每一个基本事件出现的可能性都相 等。等。 :古典概型中基本事件为有限个:古典概型中基本事件为有限个几何概型中基本事件为无限个几何概型中基本事件为无限个几何概型中,事件A的概率的计算公式:构成事件A的区域长度(面积或体积)试验的全部结果构成的区域长度(面积或

    11、体积)P(A)=相同点相同点不同点不同点例例1.1.取一个边长为取一个边长为2 2a的正方形及其内切圆,随机向正的正方形及其内切圆,随机向正方形内丢一粒豆子,求豆子落入圆内的概率方形内丢一粒豆子,求豆子落入圆内的概率. .2a.4 4豆豆子子落落入入圆圆内内的的概概率率为为答答4 44 4a aa a正正方方形形面面积积圆圆的的面面积积P P( (A A) )2 22 2数学应用数学应用解:记解:记“豆子落入圆内豆子落入圆内”为事件为事件A A数学拓展数学拓展:模拟撒豆子试验估计圆周率:模拟撒豆子试验估计圆周率.( ).mP An由此可得由此可得nm4 如果向正方形内撒如果向正方形内撒n颗豆子

    12、,其中落在圆内的颗豆子,其中落在圆内的豆子数为豆子数为m,那么当,那么当n很大时,比值很大时,比值m/ /n,即,即频率应接近与频率应接近与P(A)P(A),于是有,于是有用几何概型解简单试验问题的方法用几何概型解简单试验问题的方法 1、适当选择观察角度,转化为几何概型,、适当选择观察角度,转化为几何概型, 2、把基本事件转化为与之对应的区域,、把基本事件转化为与之对应的区域, 3、把随机事件、把随机事件A转化为与之对应的区域,转化为与之对应的区域, 4、利用概率公式计算。、利用概率公式计算。 5、要注意基本事件是等可能的。、要注意基本事件是等可能的。一个路口的红绿灯,红灯的时间为一个路口的红

    13、绿灯,红灯的时间为30秒,黄灯的时秒,黄灯的时间为间为5秒,绿灯的时间为秒,绿灯的时间为40秒。当你到达路口时,秒。当你到达路口时,看见下列三种情况的看见下列三种情况的 概率各是多少?概率各是多少?(1)红灯;()红灯;(2)黄灯;()黄灯;(3)不是红灯。)不是红灯。2.2.两根相距两根相距8m8m的木杆上系一根拉直绳子的木杆上系一根拉直绳子, ,并在绳子上并在绳子上挂一盏灯挂一盏灯, ,求灯与两端距离都大于求灯与两端距离都大于3m3m的概率的概率. .数学应用数学应用记记“灯与两端距离都大于灯与两端距离都大于3m”3m”为事件为事件A A,由于绳长由于绳长8m8m,当挂灯位置介于中间,当挂

    14、灯位置介于中间2m2m时,时,事件事件A A发生,于是发生,于是142 2P P( (A A) )8 8事件事件A A发生的概率发生的概率解:解:3 3某人上班前,发觉表停了,他打开收音机想听电台某人上班前,发觉表停了,他打开收音机想听电台整点报时,求他等待的时间短于整点报时,求他等待的时间短于1010分钟的概率分钟的概率. .打开收音机的时刻位于打开收音机的时刻位于(50(50,60)60)时间段内时间段内则事件则事件A A发生发生. . 由几何概型的求概率公式得由几何概型的求概率公式得 P P(A A)= =(60-5060-50)/60=1/6/60=1/6即即“等待报时的时间不超过等待

    15、报时的时间不超过1010分钟分钟”的概率为的概率为1/6.1/6.练一练练一练: :解:记解:记“等待的时间小于等待的时间小于1010分钟分钟”为事件为事件A A课堂小结课堂小结1.1.古典概型与几何概型的区别古典概型与几何概型的区别. .相同:相同:两者基本事件的发生都是等可能的;两者基本事件的发生都是等可能的;不同:不同:古典概型要求基本事件有有限个,古典概型要求基本事件有有限个, 几何概型要求基本事件有无限多个几何概型要求基本事件有无限多个. 2.2.几何概型的概率公式几何概型的概率公式. . . .、体体积积) )D D的的测测度度( (长长度度、面面积积、体体积积) )d d的的测测度度( (长长度度、面面积积P P( (A A) ) 3.3.几何概型问题的概率的求解几何概型问题的概率的求解. . Good byeGood bye

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:高中数学3-3《几何概型》课件苏教版必修.ppt
    链接地址:https://www.163wenku.com/p-2688105.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库