水培蔬菜营养液PPT培训课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《水培蔬菜营养液PPT培训课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 水培 蔬菜 营养液 PPT 培训 课件
- 资源描述:
-
1、水培蔬菜营养液水培蔬菜营养液 第一节第一节 原料及其性质原料及其性质一一. .水的性质要求水的性质要求 1. 水水 自来水自来水 的的 井水井水 来来 雨水雨水 源源 洁净的水库水洁净的水库水 2. 水水 硬度硬度:45mg/LO2 求求 NaCl含量含量:2mmol/L 余氯余氯:Cl0.3mg/L 重金属及其它有害元素重金属及其它有害元素 水分水分软水软水和和硬水硬水(指含有较多钙、镁盐的水指含有较多钙、镁盐的水); 钙盐钙盐主要是重碳酸钙主要是重碳酸钙Ca(HCO3)2、硫酸钙、硫酸钙(CaSO4)、氯化钙氯化钙(CaCl2)和碳酸钙和碳酸钙(CaCO3); 镁盐镁盐主要为氯化镁主要为氯
2、化镁(MgCl2)、硫酸镁、硫酸镁(MgSO4)、重碳、重碳酸镁酸镁Mg(HCO3)2和碳酸镁和碳酸镁(MgCO3) 表表3-2 重金属及有害健康的元素容许限重金属及有害健康的元素容许限 元素元素 容许限容许限元素元素 容许限容许限 汞汞(Hg) 0.005mg/L 镉镉(Cd) 0.01mg/L 硒硒(Se) 0.01mg/L 砷砷(As) 0.01mg/L 铬铬(Cr) 0.05mg/L 铅铅(Pb) 0.05mg/L 铜铜(Cu) 0.10mg/L 锌锌(Zn) 0.20mg/L 铁铁(Fe) 0.50mg/L 氟氟(F) 1.00mg/L二二.营养元素化合物及辅助原料的性质及要求营养元
3、素化合物及辅助原料的性质及要求 分分 级级 用用 途途 说说 明明 备注备注 化学试剂化学试剂 严格试验严格试验 杂质极少杂质极少 (分分GR,AR 时使用时使用 和和CP) 医药用试剂医药用试剂 必要时用必要时用 杂质较少杂质较少 工业用化合物工业用化合物 生产常用生产常用农用化合物农用化合物 生产首选生产首选常含杂质常含杂质, ,使用时应折使用时应折算为纯品算为纯品每次购买每次购买均需分析均需分析有效含量有效含量 表表3 33 3 化合物的分级及选用化合物的分级及选用不同作物对营养液的总浓度要求有较大差异,如:不同作物对营养液的总浓度要求有较大差异,如: 表表 3- 8 不同植物对营养液总
4、浓度的要求不同植物对营养液总浓度的要求 总浓度总浓度 ( ) 1 1.5 2 2 2 3 3 适适 杜杜 鹃鹃 花花 鸢鸢 尾尾 昙昙 花花 甜甜 瓜瓜 番番 茄茄 宜宜 仙仙 人人 掌掌 水水 仙仙 葱葱 头头 黄黄 瓜瓜 芹芹 菜菜 种种 蕨类植物蕨类植物 仙客来仙客来 胡萝卜胡萝卜 一品红一品红 甘甘 蓝蓝 植植 胡胡 椒椒 百百 合合 草草 莓莓 康乃罄康乃罄 的的 非洲菊非洲菊 花叶芋花叶芋 文文 竹竹 植植 郁金香郁金香 唐菖蒲唐菖蒲 物物 芥芥 菜菜 如果营养液的总盐分浓度超过如果营养液的总盐分浓度超过0.40.5%, 有些植物有些植物就会表现出不同程度的盐害症状。就会表现出不同
5、程度的盐害症状。因此,因此,在确定营养液配方的总浓度时在确定营养液配方的总浓度时 要考虑植物的耐要考虑植物的耐盐程度。盐程度。(二二) 配方中营养元素的比例和浓度要求配方中营养元素的比例和浓度要求 1. 营养液配方的生理平衡性营养液配方的生理平衡性 生理平衡:生理平衡:指植物能从营养液中吸收到符合指植物能从营养液中吸收到符合其生理要求所需的一切营养元素,且吸收的其生理要求所需的一切营养元素,且吸收的数量比例要符合其生理要求。数量比例要符合其生理要求。 (g/Kg DW)(mg/Kg DW)植物体内矿质元素的含量植物体内矿质元素的含量 影响因素:影响因素:主要是营养元素之间的拮抗作用,主要是营养
6、元素之间的拮抗作用,它会使植物对某一种营养元素的吸收量减少以它会使植物对某一种营养元素的吸收量减少以致出现生理失调的症状。致出现生理失调的症状。 例如,例如,阳离子阳离子中中Ca2+对对Mg2+吸收的拮抗吸收的拮抗作用;作用;NH4+、H+、K+会抑制植物对会抑制植物对Ca2+、Mg2+、Fe2+等的吸收,特别是等的吸收,特别是H+对对Ca2+吸收的吸收的抑制作用尤其明显,如在酸度较低时,常会由抑制作用尤其明显,如在酸度较低时,常会由于于Ca2+的吸收受阻而出现缺钙的生理失调症状;的吸收受阻而出现缺钙的生理失调症状; 而而阴离子阴离子如如H2PO4-、NO3-和和Cl-之间也存之间也存在着不同
7、程度的拮抗作用。在着不同程度的拮抗作用。 营养液中的营养元素适宜的比例或浓度营养液中的营养元素适宜的比例或浓度可以通过可以通过分析正常生长的植物体内各种营养分析正常生长的植物体内各种营养元素的含量及其比例来确定元素的含量及其比例来确定 制定生理制定生理平衡营养液配方的原则平衡营养液配方的原则 制定营养液配方的实例:制定营养液配方的实例: 例例1:Arnon-Hoagland以植株分析确定番茄营养液配方的方法以植株分析确定番茄营养液配方的方法 表表 3- 9 Arnon-Hoagland 以植株分析确定以植株分析确定番茄番茄营养液配方的步骤和方法营养液配方的步骤和方法 营营 养养 元元 素素 步
8、步 骤骤 内内 容容 N P K Ca Mg S 小计小计 1 正常生长的正常生长的番茄番茄每株一生吸收营每株一生吸收营 养元素的数量养元素的数量 (g/ 株株 ) 14.79 3.68 23.06 7.10 2.84 1.80 53.27 2 步骤一的吸收量换算成毫摩尔数步骤一的吸收量换算成毫摩尔数 ( mmol) 1069.3 118.7 591.3 177.5 118.3 56.3 2131.4 3 以毫摩尔数计,每种元素占有吸以毫摩尔数计,每种元素占有吸 收总量的百分数收总量的百分数 (%) 50.17 5.57 27.74 8.33 5.55 2.64 100.00 4 确定出配方的
9、总浓度为确定出配方的总浓度为 37mmol/L 时各营养元素的占有量时各营养元素的占有量 ( mmol) 18.56 2.06 10.27 3.08 2.05 0.98 37.00 确定各种配方中肥料的毫摩尔数确定各种配方中肥料的毫摩尔数 (mg/L) Ca(NO 3 ) 2 .4H 2 O 3mmol NO 3 - : 6 3 708 KNO 3 10mmol NO 3 - : 10 10 1011 NH 4 H 2 PO 4 2mmol NH 4 + :2 2 230 5 MgSO 4 .7H 2 O 2mmol 2 2 493 营养元素毫摩尔数营养元素毫摩尔数 ( mmol) 18 2
10、10 3 2 2 37 6 合计合计 配方中肥料总量配方中肥料总量 (mg /L) 2442 例例2:山崎肯哉根据植物吸收营养液中的养分和水分的比值来:山崎肯哉根据植物吸收营养液中的养分和水分的比值来确定营养液配方的方法:确定营养液配方的方法: 表表 3-10 山崎以植物吸水和吸肥的关系确定山崎以植物吸水和吸肥的关系确定黄瓜黄瓜营养液配方的步骤和方法营养液配方的步骤和方法 步步 骤骤 内内 容容 N P K Ca Mg S 吸肥量吸肥量 (g) 与吸与吸 水量水量 (L) 的比值的比值 1 每株正常生长的每株正常生长的黄瓜黄瓜一生一生 吸收营养元素的数量吸收营养元素的数量 (n 值,值, mm
11、ol/ 株株 ) 2253.8 173.4 1040.2 606.8 346.8 未测未测 2 每株黄瓜一生吸水量每株黄瓜一生吸水量 (w 值值 ) 为为 173.36L 时各营养时各营养 元素的元素的 n/w 值值 ( mmol/L) 13 1 6 3.5 2 - 3 确定各种肥料的用量确定各种肥料的用量 Ca(NO 3 ) 2 .4H 2 O 3.5mmol/L KNO 3 6mmol/L NH 4 H 2 PO 4 1mmol/L MgSO 4 .7H 2 O 2mmol/L NO 3 -N:7 NO 3 -N:6 NH 4 + -N:1 - - - 1 - - 6 - - 3.5 -
12、- - - - - 2 - - - 2 5. 换算值换算值 (g/L) 0.826 0.606 0.114 0.492 4 合计营养元素毫摩尔数合计营养元素毫摩尔数 ( mmol/L) 14 1 6 3.5 2 2 28.6 5 换算为肥料用量换算为肥料用量 (g/L) 总盐分总盐分 2.038(g/L) 2. 营养液配方的化学平衡性营养液配方的化学平衡性 化学平衡:化学平衡:主要是指营养液配方中,含有营主要是指营养液配方中,含有营养元素的化合物当其养元素的化合物当其离子离子浓度达到一定水平浓度达到一定水平时会时会相互作用形成难溶性化合物从营养液中相互作用形成难溶性化合物从营养液中析出析出,从
13、而使得营养液中某些营养元素的有,从而使得营养液中某些营养元素的有效性降低以致影响到效性降低以致影响到 营养液中各种营养元营养液中各种营养元 素之间的相互平衡。素之间的相互平衡。 溶液中是否会形成难溶性化合物溶液中是否会形成难溶性化合物(或称难或称难溶性电解质溶性电解质)是根据是根据溶度积法则溶度积法则来确定的。来确定的。 溶度积法则:溶度积法则:是指存在于溶液中的两种能够相是指存在于溶液中的两种能够相互作用形成难溶性化合物的互作用形成难溶性化合物的阴阳离子阴阳离子,当其,当其浓浓度度(以以mmol为单位为单位)的乘积的乘积大于大于这种难溶性化这种难溶性化合物的溶度积常数合物的溶度积常数(Sp)
14、时,就会产生沉淀,否时,就会产生沉淀,否则,就没有沉淀的产生。则,就没有沉淀的产生。 溶度积常数的可表示为:溶度积常数的可表示为: Sp-AxBy=Am+xBn-y 以以A-H番茄营养液配方番茄营养液配方为例说明产生难溶性化为例说明产生难溶性化合物的可能性:合物的可能性: 表表311 Arnon-Hoagland番茄营养液配方番茄营养液配方 化合物化合物 盐浓度盐浓度(g/L) 离子浓度离子浓度(mol/L)Ca(NO3)2.4H2O 0.708 Ca2+ 310-3 ; NO3- 610-3 KNO3 1.011 K+ 10 10-3 ; NO3- 610-3 NH4H2PO4 0.230
15、NH4+ 210-3 ; H2PO4- 210-3 MgSO4.7H2O 0.493 Mg2+ 210-3 ; SO42- 210-3FeSO4.7H2O 0.0139 Fe2+ 510-5 ; SO42- 510-5(1) Ca2+与与SO42-产生产生CaSO4沉淀的可能性沉淀的可能性根据溶度积法则计算得:根据溶度积法则计算得: Ca2+SO42-=310-3210-3=610-6; 查查CaSO4的溶度积常数为:的溶度积常数为: Sp-CaSO4=9.110-6, 将营养液配方中将营养液配方中Ca2+与与SO42-的溶度积与的溶度积与CaSO4的溶度的溶度积常数比较可知:积常数比较可知:
16、 Ca2+SO42-=610-6 Sp-CaSO4=9.110-6 即说明即说明A-H配方中不会产生配方中不会产生CaSO4沉淀沉淀。(2) Ca2+与磷酸根离子与磷酸根离子(HPO42-、PO43-)产生磷酸钙沉产生磷酸钙沉淀的可能性淀的可能性A-H配方配制的营养液在配方配制的营养液在pH=6.0时会产生时会产生CaHPO4沉淀沉淀! 防止沉淀产生的方法:防止沉淀产生的方法: 通过降低溶液通过降低溶液pH值来防止磷酸钙沉淀的方法值来防止磷酸钙沉淀的方法 只有控制溶液的只有控制溶液的pH值值Sp-FePO4=1.310-22, 可见肯定可见肯定会造成会造成FePO4的沉淀的沉淀而致使作物出现缺
17、铁症状。而致使作物出现缺铁症状。 但事实上,在但事实上,在pH6.0时时A-H配方配制的营养液配方配制的营养液不不会出现会出现FePO4的沉淀的沉淀。这主要是由于采用了有机螯合。这主要是由于采用了有机螯合物来物来螯合铁离子螯合铁离子,使得,使得Fe2+不易被氧化,而且不易与不易被氧化,而且不易与PO43- 起化学反应而沉淀,从而使得起化学反应而沉淀,从而使得Fe在营养液中可在营养液中可以保持较高的有效性。以保持较高的有效性。(4) Ca、Mg形成氢氧化物沉淀的可能性形成氢氧化物沉淀的可能性 Ca、Mg形成氢氧化物沉淀的可能性主要是在营形成氢氧化物沉淀的可能性主要是在营养液养液呈较强的碱性时才会
18、发生呈较强的碱性时才会发生。 通过计算得知:形成通过计算得知:形成Ca(OH)2沉淀的条件是:沉淀的条件是:pH12.63; 形成形成Mg(OH)2沉淀的条件是:沉淀的条件是:pH9.98。 产生的可能性:产生的可能性:一般情况下,配方中的化合物所产生的一般情况下,配方中的化合物所产生的生理碱性极少会达到这么高的生理碱性极少会达到这么高的pHpH值;只有在用碱液中和营养值;只有在用碱液中和营养液的生理酸性时,若液的生理酸性时,若操作不当操作不当就有可能出现营养液中局部碱就有可能出现营养液中局部碱性很强、性很强、pHpH值过高而产生沉淀的可能。值过高而产生沉淀的可能。 解决方法:解决方法:在加碱
19、液中和酸性时,要用浓度在加碱液中和酸性时,要用浓度较较稀的碱液稀的碱液,而且在加入碱液时要,而且在加入碱液时要及时进行搅拌及时进行搅拌。 四四. 营养液氮源的选择营养液氮源的选择 (一一) 植物吸收的氮素形态植物吸收的氮素形态 主要是主要是铵态氮铵态氮和和硝态氮硝态氮。植物对铵态氮和硝态植物对铵态氮和硝态氮的吸收速率都很快,而且在体内都可以迅速地被氮的吸收速率都很快,而且在体内都可以迅速地被同化为氨基酸和蛋白质,因此说铵态氮和硝态氮同化为氨基酸和蛋白质,因此说铵态氮和硝态氮具具有同样的生理功效有同样的生理功效。 Arnon(1937)Arnon(1937)的研究结论:的研究结论:无论给植物提供
20、铵态氮还无论给植物提供铵态氮还是硝态氮都可作为其良好生长的氮源。是硝态氮都可作为其良好生长的氮源。 普良尼斯尼科夫的结论:普良尼斯尼科夫的结论:假如为每一种氮源提供假如为每一种氮源提供最适最适的条件的条件,那么在原则上它们具有同样的营养价值,而,那么在原则上它们具有同样的营养价值,而如果在某一条件下比较这两种氮源对植物的优越性,如果在某一条件下比较这两种氮源对植物的优越性,则需视提供的条件是什么,有时铵态氮要好一些,而则需视提供的条件是什么,有时铵态氮要好一些,而有时硝态氮要好一些。有时硝态氮要好一些。直叶生菜直叶生菜硝态氮配方硝态氮配方铵态氮配方铵态氮配方硝态氮配方硝态氮配方铵态氮配方铵态氮
21、配方包心生菜包心生菜硝态氮配方硝态氮配方芥菜芥菜生菜生菜原因:原因:主要是主要是硝态氮硝态氮所引起的生理碱性较为所引起的生理碱性较为缓慢且易于控制,植物对于缓慢且易于控制,植物对于NO3-N的过量吸的过量吸收也不会对植物本身造成伤害;收也不会对植物本身造成伤害;而而铵态氮铵态氮引引起的生理酸性较为迅速且难以控制,植物吸起的生理酸性较为迅速且难以控制,植物吸收收NH4+-N过多则易出现中毒的症状。过多则易出现中毒的症状。 因此,利用硝态氮作为氮源对因此,利用硝态氮作为氮源对植物植物是是较为安全的。较为安全的。(二二) 营养液配方常用的氮源营养液配方常用的氮源表表 3-13 不同氮源营养液的不同氮
22、源营养液的pH值变化值变化 氮氮 源源 试试 验验 日日 期期 Ca(NO 3 ) 2 NH 4 NO 3 (NH 4 ) 2 SO 4 11 月月 5 日日 ( 定植定植 6.5 6.5 7.4 11 月月 6 日日 6.4 6.3 6.5 11 月月 7 日日 6.5 6.1 5.4 11 月月 8 日日 6.7 5.8 3.1 11 月月 9 日日 6.7 5.5 2.9 11 月月 10 日日 6.9 3.7 2.8 )两者比较:一般情况下,两者比较:一般情况下,铵态氮源铵态氮源所产所产生的生理酸性较强,而且变化幅度也较大;而生的生理酸性较强,而且变化幅度也较大;而硝态氮源硝态氮源所产
23、生的生理碱性较弱且变化较缓慢,所产生的生理碱性较弱且变化较缓慢,也容易控制。也容易控制。直叶生菜直叶生菜硝态氮配方硝态氮配方铵态氮配方铵态氮配方 铵态氮源都是铵态氮源都是生理酸性盐生理酸性盐,例如,例如NH4Cl、(NH4)2SO4,甚至,甚至NH4NO3,特,特别是别是NH4Cl和和(NH4)2SO4的生理酸性更的生理酸性更强,这是由于多数植物优先选择吸收强,这是由于多数植物优先选择吸收NH4+,而伴随离子的,而伴随离子的Cl-、SO42-、NO3-的吸收速率较慢,同时植物在吸收的吸收速率较慢,同时植物在吸收NH4+之后根系大量分泌出之后根系大量分泌出H+,使得,使得介介质的质的pH下降下降
24、。 介质中高浓度的介质中高浓度的H+对植物吸对植物吸收收Ca2+有很强的拮抗作用,易使有很强的拮抗作用,易使植物出现缺钙的症状;甚至还会植物出现缺钙的症状;甚至还会对植物根系造成直接的伤害,产对植物根系造成直接的伤害,产生生根系腐烂等根系腐烂等现象。现象。 硝态氮源均为硝态氮源均为生理碱性盐生理碱性盐,例如,例如Ca(NO3)2、 KNO3 、 NaNO3 等。植物优先选择吸收等。植物优先选择吸收NO3-,而对其伴随的阳离子的吸收速率较慢,同时而对其伴随的阳离子的吸收速率较慢,同时植物在选择吸收硝酸盐时根系会分泌出植物在选择吸收硝酸盐时根系会分泌出OH-,使得介质的使得介质的pH值上升值上升,
25、其结果是可能造成某,其结果是可能造成某些营养元素在高些营养元素在高pH值下产生沉淀而使其有效值下产生沉淀而使其有效性降低,如性降低,如Fe、Mn、Mg等元素。等元素。 芥菜芥菜生菜生菜使用硝态氮作为氮源对使用硝态氮作为氮源对人类人类也是安全的吗也是安全的吗? 研究发现:研究发现:硝酸盐硝酸盐是一种对人和动物有害的是一种对人和动物有害的物质,对成人的物质,对成人的致命剂量为致命剂量为1570mg/kg(体重体重)。硝酸盐在硝化系统和泌尿系统里通过大肠杆菌硝酸盐在硝化系统和泌尿系统里通过大肠杆菌还原还原为亚硝酸盐为亚硝酸盐。食用蔬菜后,在口腔即可形成亚硝酸。食用蔬菜后,在口腔即可形成亚硝酸盐。盐。
展开阅读全文