MATLAB偏微分方程求解课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《MATLAB偏微分方程求解课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- MATLAB 微分方程 求解 课件
- 资源描述:
-
1、题目:用MATLAB求解偏微分方程 主讲人: 班级: 时间:基础知识预习 微分方程的求解包含 :常微分方程的求解(上节课已经讲过)这里不再赘述。 :偏微分方程的求解(本次教学内容)偏微分方程概念 偏微分方程(Partial Differential Equation,简称PDE)指含有未知函数及其偏导数的方程。描述自变量、未知函数及其偏导数之间的关系。 偏微分方程分为线性偏微分方程式与非线性偏微分方程式,常常有几个解而且涉及额外的边界条件。常微分方程:在微分方程中,若自变量的个数只有一个的微分方程。偏微分方程:自变量的个数有两个或两个以上的微分方程。求解偏微分方程的方法 求解偏微分方程的数值方
2、法: 1. 有限元法(Finite Element Method, FEM)- hp-FEM 2. 有限体积法(Finite Volume Method, FVM) 3. 有限差分法(Finite Difference Method, FDM)。 其它:广义有限元法(Generalized Finite Element Method, FFEM)、扩展有限元法(eXtended Finite Element Method, XFEM)、无网格有限元法(Meshfree Finite Element Method)、离散迦辽金有限元法(Discontinuous Galerkin Finite
3、Element Method, DGFEM)等。MATLAB解偏微分方程 MATLAB提供了两种方法解决PDE 问题:pdepe()函数,它可以求解一般的PDEs,具有较大的通用性,但只支持命令行形式调用。 PDE 工具箱,可以求解特殊PDE 问题,PDEtool 有较大的局限性,比如只能求解二阶PDE 问题,并且不能解决偏微分方程组,但是它提供了GUI界面,从繁杂的编程中解脱出来了,同时还可以通过File-Save As直接生成M代码 使用pdeval()直接计算某个点的函数值?一般偏微分方程组(PDEs)的MATLAB求解 直接求解一般偏微分方程(组),它的调用格式为sol=pdepe(m
4、,pdefun,pdeic,pdebc,x,t)(1) ) u,t,s(x,),()u,( cxuxuutxfxxxtuxutxmm,问题描述函数初值条件边界条件输出参数自变量参数【输入参数】(1) pdefun:是PDE 的问题描述函数,它必须换成下面的标准形式 PDE 就可以编写下面的入口函数 c,f,s=pdefun(x,t,u,du) m,x,t就是对应于(式1)中相关参数和自变量,du是u的一阶导数,由给定的输入变量即可表示出出c,f,s这三个函数(1) ) u,t,s(x,),()u,( cxuxuutxfxxxtuxutxmm,【输入参数】(2) pdeic:是PDE 的初值条件
5、,必须化为下面的形式 我们使用下面的简单的函数来描述为u0=pdeic(x)00),(uutx【输入参数】(3) pdebc:是PDE的边界条件描述函数,必须先化为下面的形式 于是边值条件可以编写下面函数描述为pa,qa,pb,qb=pdebc(x,t,u,du)其中a 表示下边界,b 表示下边界0 ) xu u,t,(x, f *u).t,q(x, u) t,p(x,【输入参数】(4) m:就是对应于(式1)中相关参数 x,t:就是对应于(式1)中自变量(1) ) u,t,s(x,),()u,( cxuxuutxfxxxtuxutxmm,【输出参数】 sol:是一个三维数组,sol(:,:,
展开阅读全文