超导材料ppt课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《超导材料ppt课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 超导 材料 ppt 课件
- 资源描述:
-
1、.超导材料超导材料2015级 材料物化六组演讲:陆永发 高璐 鲍舒婷幻灯片制作:高璐 郑长天资料收集:朴星 鲍习科 戴宪军信息整理:郭世铭 潘影 盛云.01020304引言引言超导材料的性质及超导现象的机理超导材料的性质及超导现象的机理氧化物基超导陶瓷氧化物基超导陶瓷超导材料的应用超导材料的应用.1. 引言引言 1.1 超导现象的发现超导现象的发现1911年,荷兰莱顿大学的H卡茂林昂内斯(Heike Kamerlingh Onnes,18531926 绰号“绝对零度先生”)意外地发现,将汞冷却到4.35K(-268.98)时,汞的电阻突然消失;后来他又发现许多金属和合金都具有与上述汞相类似的低
2、温下失去电阻的特性,由于它的特殊导电性能,H卡茂林昂内斯称之为超导态。卡茂林由于他的这一发现获得了1913年诺贝尔奖。卡茂林在诺贝尔奖领奖演说中指出:低温下金属电阻的消失“不是逐渐的,而是突然的”,水银在4.2K进入了一种新状态,由于它的特殊导电性能,可以称为超导态” 。.1.引言引言图1.1 Hg在4.2K附近的R-T曲线u 超导体从正常态转变为超导态(0电阻)时的温度称为超导转变温度TCu 从图1.1中可见:超导转变前后电阻变化超过104倍。TC.1. 引言引言 1.2 迈斯纳效应的发现迈斯纳效应的发现1933年德国物理学家迈斯纳(W.Meissner)和奥森菲尔德(R.Ochsebfek
3、d)对锡单晶球超导体做磁场分布测量时发现:在小磁场中把金属冷却进入超导态时,体内的磁力线一下被排出,磁力线不能穿过它的体内,也就是说超导体处于超导态时,体内的磁场恒等于零。迈斯纳效应的具体现象和机理将在2.1.2节解释。图1.2 迈纳斯效应示意图.1.引言引言 1.3 超导材料的早期研究进展超导材料的早期研究进展在超导现象发现的1911年之后的70多年里,人们所制备出的超导材料一直处在低温下,最高不过23.2K上世纪80年代后期,发现了镧钡铜氧化物(TC=35K,在当时是不折不扣的“高温超导体”)后,“高温超导体”的研究掀起了高潮。1986年之后发现的多元系氧化物超导体使TC值在10年时间里提
4、高到160K值得一提的是:并不是所有的金属单质在极低的温度下都有超导性。【例如:碱金属、碱土金属、贵金属在10-3K下也没有表现出超导性】.1. 引言引言 1.4 超导体的分类超导体的分类超导体第一类超导体:所有元素超导体(首先被发现的超导体,但其TC太低,应用价值有限)第二类超导体:所有合金和化合物超导体(80年代后新发现的超导体,相比第一类超导体,TC大大提高,具有广阔的应用前景).2. 超导材料超导材料的的性性质质及超导现象的机理及超导现象的机理2.1 超导体的宏观性质超导体的宏观性质2.2 超导态转变的热力学机理超导态转变的热力学机理2.3 超导体的宏观模型(唯象理论)超导体的宏观模型
5、(唯象理论)2.4 超导体的微观性质超导体的微观性质2.5 超导体的微观模型超导体的微观模型BCS理论理论.2. 超导材料超导材料的的性性质质及超导现象的机理及超导现象的机理 2.1 超导体的宏观性能超导体的宏观性能2.1.1 超导体的电性能(零电阻效应)超导体的电性能(零电阻效应)1.1节中已经提到超导体在TC温度以下电阻率会突然变为0,这种现象即为零电阻效应。但零电阻效应的发生是有前提条件的。“实践是检验真理的唯一标准”,大量的实验结果已证实:当超导体处于超导态时,只有电流为直流或低频交流,且电流产生的磁场不至于太高时才会产生零电阻效应。换句话说,对于一段超导体,电流存在一个临界值IC(相
6、应地,电流密度也存在着临界值JC),当电流超过IC时,超导体的超导态就会被破坏而转变会正常态。.2. 超导材料超导材料的的性性质质及超导现象的机理及超导现象的机理 临界电流密度存在的原因西尔斯比定则西尔斯比指出,临界电流JC与临界磁场Hc之间存在内在的联系,他认为电流之所以能够破环超导电性,纯粹是电流所产生的磁场引起的。并作如下假设,在无外加磁场的情况下 ,临界电流在超导体表面所产生的磁场恰好等于Hc,许多人的实验证实了这一点,并把它称为西尔斯比定则。“学而时习之,不亦说乎”,根据大家上高中物理时学到的电流磁效应的知识,电流会产生磁场,导体表面的磁场强度H与电流密度J以及导体截面半径R的关系为
7、: (2.1)将临界磁场强度HC代入公式(2.1)得: (2.2) .2. 超导材料超导材料的的性性质质及超导现象的机理及超导现象的机理2.1.2 超导体的磁性能(迈斯纳效应)超导体的磁性能(迈斯纳效应)在超导电性发现后二十年来,都是把超导体的磁性归结为超导体的无限导电性的结果,把超导体归结为电阻等于零的“理想导体”。由于超导态的零电阻,在超导态的物体内部电场E=0;所以当外加磁场改变时,根据楞次定律,在金属表面将感生一个感生电流,以抵消外磁场的变化,这个感生电流密度J不受到电场的作用,同时金属又是无阻的,所以这个电流不消失,永远保持着金属内的磁通不变。把这种磁性看作是零电阻的结果。这种解释有
8、一个重大局限:按这种理论感生电流密度J在外磁场H00时也不消失,那超导体将因此产生磁性。这与事实不符,因为,当外磁场H00时。超导体没有磁性。直到1933年,迈斯纳(Meissner)对超导圆柱Pb和Sn在外加磁场作用下测量磁通密度分布时,发现了一个惊人的想象:不管外加磁场次序如何,超导体内磁场感应强度总是等于零,超导体即使处在外磁场中,也永远没有内部磁场,它与外加磁场的历史无关,这个效应称之为迈斯纳效应。图2.1 迈纳斯效应示意图.2. 超导材料超导材料的的性性质质及超导现象的机理及超导现象的机理 迈纳斯效应的机理:迈斯纳效应,常常概括说成:超导体具有“完全的抗磁性”,即在超导体内部保持磁感
9、强度B=0,应该注意到的是,完全抗磁性并不是说磁化强度M和磁场强度H均为0。根据B=0(H+M),有 (2.3)以球形样品为例,球形样品均匀外磁场中将沿磁场方向均匀磁化。如果磁化强度为M,则各处磁场强度可以根据M所引起的表面“磁荷”分布计算,这样磁荷应在球内产生均匀磁场强度(即退磁场)为 (2.4)加上外磁场,得到球内磁场强度 (2.5)将公式(2.5)代入(2.3) (2.6)即 (2.7)将公式(2.7)代入(2.5) (2.8) 3MHM00H23M0H23H .2. 超导材料超导材料的的性性质质及超导现象的机理及超导现象的机理根据公式(2.7)(2.8)可得知球内的磁感强度B由于磁化强
10、度M和磁场强度H的抵消而等于0,而且磁化强度M和磁场强度H的大小均与外磁场成比例关系球外的磁场就等于外磁场再加上等于整个球体的磁矩的磁偶极子的磁场。最后我们要着重指出零电阻效应和迈斯纳效应是超导体的两个相互独立而又紧密联系的基本特性,单纯的=0,并不能保证有迈斯纳效应,而B=0必须要求=0。因为=0是存在迈斯纳效应的必要条件,为了保证超导体内B=0,必须有一个无阻(即=0)的表面电流以屏蔽超导体内部,这个屏蔽外磁场的电流也叫做迈斯纳电流,这样似乎B=0比=0更重要,其实不然,因为=0,则要求超导体内E=0。而B=0只保证在超导体内没有感应电场,并不能保证任何情况下式E=0都成立。.2. 超导材
11、料超导材料的的性性质质及超导现象的机理及超导现象的机理2.2 从热力学的角度看超导转变从热力学的角度看超导转变2.2.1 超导转变过程中的自由能变化超导转变过程中的自由能变化根据在同温度下,磁场强度变化后的自由能计算公式 (2.9)由于gs(HC,T)=gn(HC,T) (2.10)式中:gn(HC,T)表示正常态在临界磁场中,温度为T时的单位体积自由能(正常态自由能与外磁场无关); gs(0,T)表示超导态在无外界磁场时,温度为T时单位体积自由能; HC(T)表示临界磁场与温度的关系,可以用以下公式计算: 2, 0,g20sHTgTHs图2.2 Pb在0K时gs、gn与外磁场H的关系图gn(
12、H)gs(H)HC)1 ()(220CCCTTHTH2)(, 0,g20nTHTgTHCsC从图2.2中可见:在T一定的前提下,HHC时,gsHC时,gsgn.2. 超导材料超导材料的的性性质质及超导现象的机理及超导现象的机理2.2.2 超导转变过程中熵的变化超导转变过程中熵的变化根据有关热力学方程可推得: (2.11) 由公式(2.10)可得将HC(T)对T求导一定小于0,这已经有实验结果证实(见图2.3)。故sn-ss0所以超导转变后,超导态的熵值一定小于正常态,这说明超导态比正常态有序程度更高。(这一点将在2.5节中说明其微观机理)dTTdHHssCCsn)(0 图2.3 一些元素超导体
13、的HC-T图线.2. 超导材料超导材料的的性性质质及超导现象的机理及超导现象的机理2.2.3 超导转变过程中比热的变化超导转变过程中比热的变化根据我们在固体物理中学到的晶格振动理论,比热的微观机理由两部分组成:晶格贡献和电子贡献。超导态时的比热与正常态一样,也是由这两部分组成。但由于超导态通常在低温下出现,所以电子贡献占主导。主要的区别在于:当超导体由正常态过渡到超导态时,晶格(或声子)比热基本不变,电子比热发生了较大变化。从图2.4可见:在T略低于TC时,超导态比热大于正常态比热,由C=T(S/T)可知,当超导态金属在这一温度被冷却时,其传导电子的熵比在同一温度区正常态的熵减小速率更快,这与
14、2.2节中sn-ss0的结果相一致。图2.4 Al在超导态时的比热Cs与正常态比热Cn的C-T曲线CsCnTc.2. 超导材料超导材料的的性性质质及超导现象的机理及超导现象的机理2.2.4 从从热力学角度看热力学角度看超导态转变小结超导态转变小结(1)从自由能来看,物质能否自发转变为超导态与外磁场强度H0以及环境温度T有关。(见图2.5)(2)从超导态转变前后熵和比热的变化来看,相同温度下,超导态熵值低于正常态。这说明:在冷却超导体时,除正常金属被冷却时通常出现的传导电子熵减小之外,在小于TC的温度下,必然开始形成某种额外形式的电子有序。图2.5 某种超导体在一定H0、T下的热力学稳定态示意图
15、 以上两点和超导态的电学性质结合起来,使人相信,超导态是由于电子以某种方式组织和结合起来,使它们可以不受散射在TTC时,这种超导电子有序状态随温度增加而不断瓦解。.2. 超导材料超导材料的的性性质质及超导现象的机理及超导现象的机理 2.3 超导体唯象理论的发展:超导体唯象理论的发展:2.3.1 二流体模型二流体模型1934年,戈特和卡西米尔根据超导电性的某些热力学性质提出了超导态的二流体模型,认为超导态比正常态更为有序是由共有化电子发生某种有序转变而引起的。该理论提出超导电子的概念,指出:超导电子不受晶格振动的影响,用NS表示其浓度,用秩序度(T)表示超导电子占总电子浓度N的比例: 当 TTC
16、 时,NS(T)=0,(T)=0;当 TTC 时,0(T)1;当 T=0K 时,NS(T)=N,(T)=1。这是一个不成熟的模型,无法从根本上解释超导机制,基本假设为超导相中共有电子凝聚成高度有序的超导电子,但却对凝聚过程没有加以说明。NTNTS)()(.2. 超导材料超导材料的的性性质质及超导现象的机理及超导现象的机理2.3.2 伦敦方程伦敦方程1935年,F.伦敦(Fritz London)和H.伦敦(Heinz London)建立了超导体的电动力学方程,成功地解释了超导体一系列奇特的电磁性质。其中(2.12a)描述了超导体的零电阻性;(2.12b)描述了超导体的抗磁性。式中JS是超导电流
17、,C是光速,称为伦敦穿透深度,其计算式为(2.13),ns是超导电子的密度,m、e为电子的质量和电荷。(2.12a)(2.12b)(2.13).2. 超导材料超导材料的的性性质质及超导现象的机理及超导现象的机理如果是直流电流,由方程(2.12a)可直接得出电阻率为零,因此方程(2.12a)反映了理想导电性的事实。由方程(2.12b)可得出在超导体表面附近,磁场是按指数规律衰减的。穿透层的深度约为,其数量级为10-16cm。在超导体内部磁场为零。因此方程(2.12b)反映了理想抗磁性的事实。伦敦方程预言了表面透入层的存在。而且当超导体的尺寸与相近时,磁场会透入到样品中心。因此小尺寸超导体不具有完
18、全抗磁性,它在磁场中的能量就比大块超导体低,从而临界磁场会高于大块样品。另一方面,伦敦方程有一定的局限性:实验发现,对于锡、铟等超导体,的测量值以及临界磁场与样品尺寸的关系,与伦敦理论只是定性的符合,在数量上并不一致,有的甚至定性的关系也不符合。.2. 超导材料超导材料的的性性质质及超导现象的机理及超导现象的机理2.3.3 金兹堡金兹堡-朗道方程朗道方程1950年,VL金兹堡和LD朗道在二级相变理论的基础上提出了金兹堡朗道理论(简称GL理论)。超导态与正常态间的相互转变是二级相变(相变时无体积变化,也无相变潜热)。1937年朗道曾提出二级相变理论,认为两个相的不同全在于秩序度的不同,并引进序参
19、量来描述不同秩序度的两个相,=0时为完全无序,=1时为完全有序。(2.14a)(2.14b).2. 超导材料超导材料的的性性质质及超导现象的机理及超导现象的机理GL理论把二级相变理论应用于正常态与超导态的相变过程,其独到之处是引进一个有效波函数作为复数序参量,|2 则代表超导电子的数密度,应用热力学理论建立了关于的金兹堡-朗道方程。根据GL理论可得到许多与实验相符的结论,例如临界磁场、相干长度及穿透深度与温度的关系等。GL理论还给出了区分第一类超导体和第二类超导体的判据:第一类超导体表面能为正;第二类超导体表面能为负。.2. 超导材料超导材料的的性性质质及超导现象的机理及超导现象的机理 2.4
20、 超导体的微观性质超导体的微观性质2.4.1 超导能隙超导能隙超导体最低激发态与基态之间存在一定的能量间隙。19611962年间,美籍挪威人贾埃瓦( I. Giaever)用铝做成了Al-Al2O3-Al隧道元件进行超导实验,直接观测到了超导能隙。拆散一个电子对(库珀对,将在2.6节介绍)产生两个单电子至少需要能隙宽度2的能量。热运动可以拆散电子对产生单电子。能隙的存在使得在温度T远低于临界温度TC时,超导体中单电子(正常电子)的数目按 exp(-2/kT)变化。这就导致超导体的电子比热容和热导率按温度指数规律变化。当电磁波(微波或远红外线)的频率足够高 (hv2)时,同样可以激发出单电子。此
21、时超导体会强烈地吸收电磁波。这种现象都证明能隙的存在,并可用来测定能隙值2。.2. 超导材料超导材料的的性性质质及超导现象的机理及超导现象的机理2.4.2 同位素效应同位素效应同位素效应是指超导体的临界温度依赖于同位素质量的现象。1950年英国H.弗罗利希指出,金属中电子通过交换声子(点阵振动)可以产生吸引作用。他预言超导体的临界温度(就是超导转变温度TC)与同位素的质量之间存在一定的关系。果然,弗罗里希的预言得到了实验的证实。同年麦克斯韦(E.Maxwell)和雷诺(C.A.Rayhold)各自独立测量了水银同位素的临界转变温度。实验发现TC-1/2,其中为同位素质量。同位素效应把晶格振动(
22、其量子称为声子)与电子联系起来了。它告诉人们电子-声子的相互作用与超导电性密切相关。同位素效应为BCS理论的建立指明了研究方向.2. 超导材料超导材料的的性性质质及超导现象的机理及超导现象的机理2.4.3 超导隧道效应超导隧道效应把两块正常态金属电极中间夹一层很薄的绝缘层的结构叫做隧道结(记为NIN结)。根据量子力学原理,在隧道结两端有电压(V)时,电子可以通过这样薄的绝缘层,并产生足够大的可观测的电流(I),而且IV。这是正常态金属的隧道效应。当温度远低于超导体的临界温度时,对于一个电极是超导体S的隧道结(记为SIN结),结电阻猛增。在V达到某一临界值之前,I很小且增加很慢;当V超过这一值后
展开阅读全文