管理运筹学最短路实例PPT课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《管理运筹学最短路实例PPT课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 管理 运筹学 短路 实例 PPT 课件
- 资源描述:
-
1、管管 理理 运运 筹筹 学学.1 2 2最短路问题最短路问题 例例 设备更新问题。某公司使用一台设备,在每年年初,公司就要设备更新问题。某公司使用一台设备,在每年年初,公司就要决定是购买新的设备还是继续使用旧设备。如果购置新设备,就要支决定是购买新的设备还是继续使用旧设备。如果购置新设备,就要支付一定的购置费,当然新设备的维修费用就低。如果继续使用旧设备,付一定的购置费,当然新设备的维修费用就低。如果继续使用旧设备,可以省去购置费,但维修费用就高了。请设计一个五年之内的更新设可以省去购置费,但维修费用就高了。请设计一个五年之内的更新设备的计划,使得五年内购置费用和维修费用总的支付费用最小。备的
2、计划,使得五年内购置费用和维修费用总的支付费用最小。 已知:设备每年年初的价格表已知:设备每年年初的价格表 设备维修费如下表设备维修费如下表年份年份12345年初价格年初价格1111121213使用年数使用年数0-11-22-33-44-5每年维修每年维修费用费用5681118管管 理理 运运 筹筹 学学.2 2 2最短路问题最短路问题解:解: 将问题转化为最短路问题,如下图:将问题转化为最短路问题,如下图: 用用vi表示表示“第第i年年初购进一台新设备年年初购进一台新设备”,弧(弧(vi,vj)表示第)表示第i年年初购进年年初购进的设备一直使用到第的设备一直使用到第j年年初。年年初。把所有弧
3、的权数计算如下表:把所有弧的权数计算如下表:v1v2v3v4v5v6123456116223041592162230413172331417235186管管 理理 运运 筹筹 学学.3 2 2最短路问题最短路问题 (继上页继上页) 把权数赋到图中,再用把权数赋到图中,再用Dijkstra算法求最短路。算法求最短路。 最终得到下图,可知,最终得到下图,可知,v1到到v6的距离是的距离是53,最短路径有两条:,最短路径有两条: v1 v3 v6和和 v1 v4 v6v1v2v3v4v5v6162230415916223041312317181723 V1(0,s)v3v4(41,1) v5v622
4、30415916(22,1)3041312317181723 V2(16,1)16(30,1)(53,3)(53,4)管管 理理 运运 筹筹 学学.4 3 3最小生成树问题最小生成树问题 树是图论中的重要概念,所谓树就是一个无圈的连通图。树是图论中的重要概念,所谓树就是一个无圈的连通图。 图图11-11中,中,(a)就是一个树,而就是一个树,而(b)因为图中有圈所以就不因为图中有圈所以就不是树,是树, (c)因为不连通所以也不是树。因为不连通所以也不是树。图图11-11v1v2v3v4v5v6v7v8v9v1v2v3v5v8v7v6v4v1v2v3v4v5v7v6v8v9(a)(b)(c)管管
5、 理理 运运 筹筹 学学.5 3 3最小生成树问题最小生成树问题 给了一个无向图给了一个无向图G=(V,E)G=(V,E),我们保留,我们保留G G的所有点,而删掉部分的所有点,而删掉部分G G的边或的边或者说保留一部分者说保留一部分G G的边,所获得的图的边,所获得的图G G,称之为,称之为G G的生成子图。在图的生成子图。在图11-1211-12中,中,(b)(b)和和(c)(c)都是都是(a)(a)的生成子图。的生成子图。 如果图如果图G G的一个生成子图还是一个树,则称这个生成子图为生成树,的一个生成子图还是一个树,则称这个生成子图为生成树,在图在图11-1211-12中,中,(c)(
6、c)就是就是(a)(a)的生成树。的生成树。 最小生成树问题就是指在一个赋权的连通的无向图最小生成树问题就是指在一个赋权的连通的无向图G G中找出一个生成中找出一个生成树,并使得这个生成树的所有边的权数之和为最小。树,并使得这个生成树的所有边的权数之和为最小。图图11-12(a)(b)(c)管管 理理 运运 筹筹 学学.6 3 3最小生成树问题最小生成树问题一、求解最小生成树的破圈算法一、求解最小生成树的破圈算法算法的步骤:算法的步骤:1、在给定的赋权的连通图上任找一个圈。、在给定的赋权的连通图上任找一个圈。2、在所找的圈中去掉一个权数最大的边(如果有两条或两条、在所找的圈中去掉一个权数最大的
7、边(如果有两条或两条以上的边都是权数最大的边,则任意去掉其中一条)。以上的边都是权数最大的边,则任意去掉其中一条)。3、如果所余下的图已不包含圈,则计算结束,所余下的图即、如果所余下的图已不包含圈,则计算结束,所余下的图即为最小生成树,否则返回第为最小生成树,否则返回第1步。步。管管 理理 运运 筹筹 学学.7 3 3最小生成树问题最小生成树问题例例4 用破圈算法求图(用破圈算法求图(a)中的一个最小生成树)中的一个最小生成树v1331728541034v7v6v5v4v2v13317285434v7v6v5v4v2v133725434v7v6v5v4v2v3v3v31v13372434v7v
8、6v5v4v2v31v1337234v7v6v5v4v2v31v133723v7v6v5v4v2v31(a)(b)(c)(d)(e)(f)图图11-13管管 理理 运运 筹筹 学学.8 3 3最小生成树问题最小生成树问题 例例5、某大学准备对其所属的、某大学准备对其所属的7个学院办公室计算机联网,这个网络的个学院办公室计算机联网,这个网络的可能联通的途径如下图,图中可能联通的途径如下图,图中v1,v7 表示表示7个学院办公室,请设计一个学院办公室,请设计一个网络能联通个网络能联通7个学院办公室,并使总的线路长度为最短。个学院办公室,并使总的线路长度为最短。 解:此问题实际上是求图解:此问题实际
9、上是求图11-1411-14的最小生成树,这在例的最小生成树,这在例4 4中已经求得,中已经求得,也即按照图也即按照图11-1311-13的的(f)(f)设计,可使此网络的总的线路长度为最短,为设计,可使此网络的总的线路长度为最短,为1919百米。百米。 “管理运筹学软件管理运筹学软件”有专门的子程序可以解决最小生成树问题。有专门的子程序可以解决最小生成树问题。v1331728541034v7v6v5v4v2v3图图11-14管管 理理 运运 筹筹 学学.9 4 4最大流问题最大流问题最大流问题:给一个带收发点的网络,其每条弧的赋权称之为容量,最大流问题:给一个带收发点的网络,其每条弧的赋权称
10、之为容量,在不超过每条弧的容量的前提下,求出从发点到收点的最大流量。在不超过每条弧的容量的前提下,求出从发点到收点的最大流量。一、最大流的数学模型一、最大流的数学模型 例例6 某石油公司拥有一个管道网络,使用这个网络可以把石油从采地某石油公司拥有一个管道网络,使用这个网络可以把石油从采地运送到一些销售点,这个网络的一部分如下图所示。由于管道的直径运送到一些销售点,这个网络的一部分如下图所示。由于管道的直径的变化,它的各段管道(的变化,它的各段管道(vi,vj)的流量)的流量cij(容量)也是不一样的。(容量)也是不一样的。cij的的单位为万加仑单位为万加仑/小时。如果使用这个网络系统从采地小时
11、。如果使用这个网络系统从采地 v1向销地向销地 v7运送石运送石油,问每小时能运送多少加仑石油?油,问每小时能运送多少加仑石油?v563522241263v1v2v7v4v3v6图图11-26管管 理理 运运 筹筹 学学.10 4 4最大流问题最大流问题 我们可以为此例题建立线性规划数学模型:我们可以为此例题建立线性规划数学模型: 设弧设弧(vi,vj)上流量为上流量为fij,网络上的总的流量为,网络上的总的流量为F,则有:,则有:1412232514434647234335362535573646675767471214,1,2,6;1,2,70,1,2,6;1,2,712ijijijmax
12、F = fffffffffffffffffffffffffcijfij目标函数:约束条件:管管 理理 运运 筹筹 学学.11 4 4最大流问题最大流问题 在这个线性规划模型中,其约束条件中的前在这个线性规划模型中,其约束条件中的前6 6个方程表示个方程表示了网络中的流量必须满足守恒条件,发点的流出量必须等于了网络中的流量必须满足守恒条件,发点的流出量必须等于收点的总流入量;其余的点称之为中间点,它的总流入量必收点的总流入量;其余的点称之为中间点,它的总流入量必须等于总流出量。其后面几个约束条件表示对每一条弧须等于总流出量。其后面几个约束条件表示对每一条弧(v(vi i,v,vj j) )的流量
13、的流量fij要满足流量的可行条件,应小于等于弧要满足流量的可行条件,应小于等于弧(v(vi i,v,vj j) )的容的容量量c cijij,并大于等于零,即,并大于等于零,即0 0f fijij c cijij。我们把满足守恒条件。我们把满足守恒条件及流量可行条件的一组网络流及流量可行条件的一组网络流 ffijij 称之为可行流,(即线性称之为可行流,(即线性规划的可行解),可行流中一组流量最大(也即发出点总流规划的可行解),可行流中一组流量最大(也即发出点总流出量最大)的称之为最大流(即线性规划的最优解)。出量最大)的称之为最大流(即线性规划的最优解)。 我们把例我们把例6 6的数据代入以
14、上线性规划模型,用的数据代入以上线性规划模型,用“管理运筹管理运筹学软件学软件”,马上得到以下的结果:,马上得到以下的结果:f f1212=5=5,f f1414=5=5,f f2323=2=2,f f2525=3=3,f f4343=2=2,f f4646=1=1,f f4747=2=2,f f3535=2=2,f f3636=2=2,f f5757=5=5,f f6767=3=3。最优值。最优值(最大流量)(最大流量)=10=10。管管 理理 运运 筹筹 学学.12 4 4最大流问题最大流问题二、最大流问题网络图论的解法二、最大流问题网络图论的解法 对网络上弧的容量的表示作改进。为省去弧的
15、方向,如下图对网络上弧的容量的表示作改进。为省去弧的方向,如下图: (a)和和(b)、(c)和和(d)的意义相同。的意义相同。 用以上方法对例用以上方法对例6的图的容量标号作改进,得下图的图的容量标号作改进,得下图vivjvivjcij0(a)(b) cijcijvivj(cji)(c)vivj cij cji(d)63522241263v1v2v5v7v4v3v600000000000管管 理理 运运 筹筹 学学.13 4 4最大流问题最大流问题 求最大流的基本算法求最大流的基本算法(1)找出一条从发点到收点的路,在这条路上的每一条弧顺流方向的容)找出一条从发点到收点的路,在这条路上的每一条
16、弧顺流方向的容量都大于零。如果不存在这样的路,则已经求得最大流。量都大于零。如果不存在这样的路,则已经求得最大流。(2)找出这条路上各条弧的最小的顺流的容量)找出这条路上各条弧的最小的顺流的容量pf,通过这条路增加网络,通过这条路增加网络的流量的流量pf。(3)在这条路上,减少每一条弧的顺流容量)在这条路上,减少每一条弧的顺流容量pf ,同时增加这些弧的逆流,同时增加这些弧的逆流容量容量pf,返回步骤(,返回步骤(1)。)。 用此方法对例用此方法对例6求解:求解: 第一次迭代:选择路为第一次迭代:选择路为v1 v4 v7 。弧(。弧( v4 , v7 )的顺流容量为)的顺流容量为2,决定了决定
17、了pf=2,改进的网络流量图如下图:,改进的网络流量图如下图:63522241263v1v2v5v7v4v3v6000000000004202管管 理理 运运 筹筹 学学.14 4 4最大流问题最大流问题 第二次迭代:选择路为第二次迭代:选择路为v1 v2 v5 v7 。弧(。弧( v2 , v5 )的顺流容量为)的顺流容量为3,决定了,决定了pf=3,改进的网络流量图如下图:,改进的网络流量图如下图: 第三次迭代:选择路为第三次迭代:选择路为v1 v4 v6 v7 。弧(。弧( v4 , v6 )的顺流容量为)的顺流容量为1,决定了,决定了pf=1,改进的网络流量图如下图:,改进的网络流量图
18、如下图:635222413v1v2v5v7v4v3v60000000042022033303222413v1v2v5v7v4v3v600000042022033333013管管 理理 运运 筹筹 学学.15 第四次迭代:选择路为第四次迭代:选择路为v1 v4 v3 v6 v7 。弧(。弧( v3 , v6 )的顺流容)的顺流容量为量为2,决定了,决定了pf=2,改进的网络流量图如下图:,改进的网络流量图如下图: 第五次迭代:选择路为第五次迭代:选择路为v1 v2 v3 v5 v7 。弧(。弧( v2 , v3 )的顺流容)的顺流容量为量为2,决定了,决定了pf=2,改进的网络流量图如下图:,改
展开阅读全文