书签 分享 收藏 举报 版权申诉 / 10
上传文档赚钱

类型2019年浙江高中会考数学真题及答案.doc

  • 上传人(卖家):雁南飞1234
  • 文档编号:2653721
  • 上传时间:2022-05-15
  • 格式:DOC
  • 页数:10
  • 大小:1.20MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《2019年浙江高中会考数学真题及答案.doc》由用户(雁南飞1234)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    考试试题及答案
    资源描述:

    1、2019年浙江高中会考数学真题及答案一、选择题(本大题共小题,每小题分,共分。)1.已知集合,则( )A. B. C. D.答案:A解析:.2.函数(,且)的定义域是( )A. B. C D答案:C解析:由题意得,解得,即函数定义域是.3.圆的圆心坐标是( )A. B. C.D.答案:D解析:由圆的标准方程得圆心坐标是.4.一元二次不等式的解集是( )A.B.C.D.答案:B解析:,所以原不等式的解集是.5.椭圆的焦点坐标是( )A.,B.,C.,D.,答案:B解析:由,得,又椭圆焦点在轴上,所以集点坐标是,.6.已知空间向量,若,则实数的值是( )A. B.C.D.答案:C解析:由已知得,所

    2、以,解得.7.( )A. B. C.D.答案:A解析:由余弦的二角公式得.8.若实数x,y满足不等式组,则的最小值是( )A.3 B.C.0D.答案:D解析:画出可行域如图所示,当目标函数经过点时,得.9.平面与平面平行的条件可以是( )A.内有无穷多条直线都与平行B.直线,且直线不在内,也不在内C.直线,直线,且,D.内的任何直线都与平行答案:D解析:若一平面内任意一条直线都与另一平面平行,则这两个平面平行.10.函数的图象大致是( ) 答案:A解析:,函数为奇函数,排除B、C;当,由指数函数的增长特性知递增,故选A. 11.已知两条直线,若,则实数的值是( )A.或 B.C.D.答案:C解

    3、析:,解得.12.已知某几何体的三视图如图所示,则该几何体的体积是( )A.24 B.12 C.8 D.4答案:B解析:该几何体是底面为直角梯形的直四棱柱,其体积是. 13.已知,是实数,则“”是“或”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件答案:A解析:能推出或,而或不能推出,故“”是“或”的充分而不必要条件.14.已知数列的前项和为(),则下列结论正确的是( )A.数列是等差数列B.数列是递增数列C.,成等差数列D.,成等差数列答案:D解析:当时,当时,检验时不符合,所以,逐项判断只有D选项正确.15.如图,正三棱柱(底面是正三角形的直棱柱)的底

    4、面边长为,侧棱长为,则与侧面所成的角是( )A. B. C. D.答案:A解析:过作,易证平面,所以就是与侧面所成角的平面角,由于,所以,故所求的线面角为.16如图所示,已知双曲线C:的右焦点为F,双曲线C的右支上一点A,它关于原点O的对称点为B,满足,且,则双曲线C的离心率是( )A. B.C. D.答案:C解析:如图所示,易求,由,可得,在中,由余弦定理可得,解得,即.17.已知数列满足(),若,则的取值范围是( )A. B. C. D.答案:B解析:由递推关系可知,所以,即,可求,所以,代入求得,故选B.18.已知四面体中,棱,所在直线所成的角为,且,则四面体体积的最大值是( )A. B

    5、. C.D.答案:D解析:不妨以为底,到平面的距离为高来考虑四面体的体积.在中,设,则由余弦定理知,由基本不等式知,即,所以,另一方面,设斜线与平面所成角为,则由最小角定理知,从而,所以到平面的距离,所以,故选D.二、填空题(本大题共4小题,每空3分,共15分。)19.设等比数列的前项和为,首项,公比,则 ; 答案:解析:.20.已知平面向量满足,且与不共线若与互相垂直,则实数 .答案:解析:与互相垂直,解得.21.我国南宋著名数学家秦九韶(约12021261)被国外科学史家赞誉为“他那个民族,那个时代,并且确实也是所有时代最伟大的数学家之一”他独立推出了“三斜求积”公式,求法是:“以小斜幂并

    6、大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实一为从隅,开平方得积”把以上这段文字写成从三条边长求三角形面积的公式,就是现如图,已知平面四边形中,则平面四边形的面积是 答案:解析:在中,由余弦定理得,所以,解得,或(舍),因此的面积,在中,由余弦定理得,所以,因此的面积,故四边形的面积.22.已知是定义在上的偶函数,且在上单调递增若对任意,不等式恒成立,则的最小值是 答案:解析:如图,作出的图象,因为,所以的图象始终在的上方,所以时,且,所以,当且仅当时取等号.三、解答题(本大题共小题,共分。)23.(本题满分10分)已知函数(1)求的值;(2)求函数的最小正周期; (

    7、3)当时,求函数的最小值解析:(1).(2)因为,所以函数的最小正周期为.(3)由已知,得,所以,当 时,函数的最小值为.24.(本题满分10分)如图,已知抛物线的焦点为,为坐标原点,直线与抛物线相交于,两点(1)当,时,求证:;(2)若,点关于直线的对称点为,求的取值范围解析:(1)由方程组消去,得.设,因为,所以,.(2)由方程组消去,得.由,解得或(舍).设点关于直线的对称点,由方程组,得,即.由点,得,由,得.25.(本题满分11分)设,已知函数(1)当时,写出的单调递增区间;(2)对任意,不等式恒成立,求实数a的取值范围 解析:(1)当时,所以,的单调递增区间是.(2)若,于是在上恒成立,则或,得.若,当时,即,得,所以.当时,.当时,即,得,所以综上所述,.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2019年浙江高中会考数学真题及答案.doc
    链接地址:https://www.163wenku.com/p-2653721.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库