(全册)北师大版九年级数学上教学课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(全册)北师大版九年级数学上教学课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大 九年级 数学 教学 课件 下载 _九年级上册_北师大版(2024)_数学_初中
- 资源描述:
-
1、1.1 菱形的性质与判定第一章 特殊平行四边形导入新课讲授新课当堂练习课堂小结第1课时 菱形的性质最新最新北师大北师大版版九数学上九数学上全册优质教学课件全册优质教学课件的首先教学课件的首先教学课件1.了解菱形的概念及其与平行四边形的关系;2.探索并证明菱形的性质定理.(重点)3.应用菱形的性质定理解决相关问题.(难点)学习目标问题:什么样的四边形是平行四边形?它有哪些性质呢?平行四边形的性质:边:对边平行且相等.对角线:相交并相互平分.角:对角相等,邻角互补.导入新课导入新课活动: 观察下列图片,找出你所熟悉的图形. 问题1: 观察上图中的这些平行四边形,你能发现它们有什么样的共同特征?平行
2、四边形菱形菱形:有一组邻边相等的平行四边形叫做菱形.菱形的概念及其与平行四边形的关系一讲授新课讲授新课 菱形是特殊的平行四边形,它具有平行四边形的所有性质,但平行四边形不一定是菱形.问题2: 菱形与平行四边形有什么关系?归纳平行四边形菱形集合平行四边形集合1.做一做:请同学们用菱形纸片折一折,回答下列问题: 问题1:菱形是轴对称图形吗?如果是,它有几条对称 轴?对称轴之间有什么位置关系? 问题2:菱形中有哪些相等的线段?菱形的性质探究和证明二2.发现菱形的性质:菱形是轴对称图形,有两条对称轴(对称轴直线AC和直线BD).菱形四条边都相等(AB=BC=CD=AD).菱形的对角线互相垂直(ACBD
3、).ABCOD已知:如图,在菱形ABCD中,AB=AD,对角线AC与BD相交 于点O.求证:(1)AB = BC = CD =AD; (2)ACBD. 3.证明菱形性质:证明:(1)四边形ABCD是菱形, AB = CD,AD = BC(菱形的对边相等). 又AB=AD; AB = BC = CD =AD.ABCOD(2)AB = AD, ABD是等腰三角形. 又四边形ABCD是菱形, OB = OD . (菱形的对角线互相平分) 在等腰三角形ABD中, OB = OD, AOBD, 即ACBD.ABCOD4.归纳结论 菱形是特殊的平行四边形,它除具有平行四边形的所有性质外,还有平行四边形所没
4、有的特殊性质.对称性:是轴对称图形.边:四条边都相等.对角线:互相垂直. 角:对角相等,邻角互补.边:对边平行且相等.对角线:相交并相互平分.菱形的特殊性质平行四边形的性质菱形面积的计算三ABDCah(1)菱形的面积计算公式:S = ah.(2)菱形的面积计算公式:S = SABD+SBCD = AODB + CODB = ACDB. O212121例1:如右图,四边形ABCD是边长为13cm的菱形,其中对角线BD长10cm. 求:(1)对角线AC的长度;(2)菱形ABCD的面积.ABCDE解: (1) 四边形ABCD是菱形,AC与BD相交 于点E. AED=90(菱形的对角线互相垂直), D
5、E= BD = 10 = 5(cm) . (菱形的对角线互相平分)2121ABCDE AE= =12(cm).AC=2AE=2 12= 24(cm)(菱形的对角 线互相平分).(2)如图,菱形ABCD的面积 = BD AC =120(cm2).2222513 DEAD21例2:如图,在菱形ABCD中,对角线AC与BD相交于点O,BAD=60,BD =6,求菱形的边长AB和对角线AC的长.解:四边形ABCD是菱形, ACBD(菱形的对角线互相垂直) OB=OD= BD = 6=3(菱形的对角线互相平分)在等腰三角形ABC中,BAD=60,ABD是等边三角形.AB = BD = 6. 2121菱形
6、的性质应用四ABCOD在RtAOB中,由勾股定理,得OA2+OB2=AB2,OA = = =AC=2OA= (菱形的对角线相互平分).22OBAB2236 .3336ABCOD1.填一填:根据右图填空(1)已知菱形的周长是12cm,那么它的边长是_.(2)菱形ABCD中ABC120 ,则BAC_.(3)菱形的两条对角线长分别为6cm和8cm,则菱形的边长是( )A.10cm B.7cm C. 5cm D.4cm3cm30CABCOD当堂练习当堂练习2.如图,在菱形ABCD中,对角线AC与BD 相交于点O. 已知AB=5cm,AO=4cm,求BD的长.ABCOD解:四边形ABCD是菱形, ACB
7、D (菱形的两条对角线互相垂直). AOB=90. BO= =3(cm). BD=2BO=23=6(cm).22AOAB 平行四边形有一组邻边相等的平行四边形叫做菱形.1.菱形是轴对称图形.2.菱形的四条边相等.3.菱形的对角线互相垂直平分.菱形定义性质课堂小结课堂小结见本课时练习课后作业课后作业1.1 菱形的性质与判定第一章 特殊平行四边形导入新课讲授新课当堂练习课堂小结第2课时 菱形的判定1.理解并掌握菱形的两个判定方法.(重点)2.会用这些菱形的判定方法进行有关的证明和计算.(难点)学习目标问题:什么是菱形?菱形有哪些性质?菱形的定义:有一组邻边相等的平行四边形.菱形的性质:1. 轴对称
8、图形.2. 四边相等.3. 对角线互相垂直平分.ABCD导入新课导入新课思考与动手:1.在一张纸上用尺规作图作出边长为10cm的菱形;2.想办法用一张长方形纸剪出一个菱形;3.利用长方形纸你还能想到哪些制作菱形的方法?请向同学们展示你的作品,全班交流.做一做:先将一张长方形的纸对折,再对折,然后沿图中的虚线剪下,将纸展开,就得到了一个菱形.(1)(2)(3)(4)你能说说这样做的道理吗?菱形判定定理一 问题:根据菱形的定义,邻边相等的平行四边形是菱形.除此之外,你认为还有什么条件可以判断一个平行四边形是菱形?1.小明的想法 平行四边形的不少性质定理与判定定理都是互逆命题.受此启发,我猜想:四边
9、相等的四边形是菱形,对角线垂直的平行四边形是菱形.讲授新课讲授新课2.小颖的想法 我觉得,对角线互相垂直的平行四边形有可能是菱形.但“四边相等的平行四边形是菱形”实际上与“邻边 相等的平行四边形是菱形”一样. 你是怎么想的?你认为小明的想法如何?ABCOD已知:右图中四边形ABCD是平行四边形,对角线AC与BD相交于点O ,ACBD.求证:ABCD是菱形.证明:四边形ABCD是平行四边形. OA=OC. 又ACBD, BD是线段AC的垂直平分线. BA=BC. 四边形ABCD是菱形(菱形的定义). 对角线互相垂直的平行四边形是菱形.定理试一试:对角线互相垂直的平行四边形是菱形吗?定理运用格式:
10、四边形ABCD是平行四边形,又ACBD,四边形ABCD是菱形.(对角线互相垂直的平行四边形为菱形)ABCOD小刚小刚:分别以A、C为圆心,以大于 AC的长为半径作弧,两条弧分别相较于点B , D,依次 连接A、B、C、D四点.议一议:已知线段AC,你能用尺规作图的方法作一个菱形ABCD,使AB为菱形的一条对角线?21CABD想一想:1.你是怎么做的,你认为小刚的作法对吗? 2.怎么验证四边形ABCD是菱形?提示:AB = BC=CD =AD证明:AB=BC=CD=AD; AB=CD , BC=AD. 四边形ABCD是平行四边形(平行四边形的判定).又AB=BC,四边形ABCD是菱形 (菱形的定
11、义).ABCD已知:右图中四边形ABCD,AB=BC=CD=AD.求证:四边形ABCD是菱形. 四边相等的四边形是菱形.定理定理的运用格式AB=BC=CD=DA,四边形ABCD是菱形 (四边相等的四边形为菱形).ABCD证明:在AOB中.AB= = , OA=2,OB=1. AB2=AO2+OB2. AOB是直角三角形, AOB是直角. ACBD. ABCD是菱形 (对角线垂直的平行四边形是菱形).例1:已知:如右图,在ABCD中,对角线AC与BD相交于点O,AB= ,OA=2,OB=1. 求证: ABCD是菱形.5ABCOD5典例精析利用菱形判定定理进行证明二2例2:已知:如图,在ABC,
12、AD是角平分线,点E、F分别在AB、 AD上,且AE=AC,EF = ED.求证:四边形CDEF是菱形. ACBEDF证明: 1= 2,又又AE=AC, ACD AED (SAS). 同理同理ACFAEF(SAS) .CD=ED, CF=EF. 又EF=ED,四边形ABCD是菱形(四边相等的四边形是菱形).11.下列条件中,不能判定四边形ABCD为菱形的是()A. ACBD ,AC与BD互相平分B. AB=BC=CD=DAC. AB=BC,AD=CD,AC BDD. AB=CD,AD=BC,AC BDABCODC当堂练习当堂练习2.如下图,已知平行四边形ABCD的对角线AC的垂直平分线与边AD
13、、BC分别交于点E、F,求证:四边形AFCE是菱形 ABCDEFO12证明: 四边形ABCD是平行四边形, AEFC.1=2.EF垂直垂直平分AC,AO = OC . EO =FO.四边形AFCE是平行四边形.又EFAC 四边形AFCE是菱形.有一组邻边相等的平行四边形叫做菱形.定理1:对角线互相垂直的平行四边形 是菱形.定理2:四边相等的四边形是菱形.运用定理进行计算和证明.菱形的判定定义定理课堂小结课堂小结见本课时练习课后作业课后作业1.2 矩形的性质与判定第一章 特殊平行四边形导入新课讲授新课当堂练习课堂小结第1课时 矩形的性质1.了解矩形的概念及其与平行四边形的关系;2.探索并证明矩形
14、的性质定理.(重点)3.应用矩形的性质定理解决相关问题.(难点)学习目标活动:观察下面的图形,它们都含有平行四边形,请把它们全部找出来.问题:上面的平行四边形有什么共同的特征?导入新课导入新课矩形的定义一活动:利用一个活动的平行四边形教具演示,使平行四边形的一个内角变化,请同学们注意观察.矩形:有一个角是直角的平行四边形叫做矩形.矩形讲授新课讲授新课 矩形是特殊的平行四边形,它具有平行四边形的所有性质,但平行四边形不一定是矩形.归纳平行四边形矩形集合平行四边形集合矩形性质的探究和证明二活动探究:准备素材:直尺、量角器、橡皮擦、课本、铅笔盒等.(1)请同学们以小组为单位,测量身边的矩形(如书本,
15、课桌,铅笔盒等)的四条边长度、四个角度数和对角线的长度及夹角度数,并记录测量结果.(2)根据测量的结果,猜想结论.当矩形的大小不断变化时, 发现的结论是否仍然成立?(3)通过测量、观察和讨论,你能得到矩形的特殊性质吗?ABCDO物体测量(实物)(形象图)填一填 根据上面探究出来结论填在下面横线上.角:.对角线:.ABCD四个角为90相等O证明:(1)四边形ABCD是矩形. ABC=CDA,BCD=DAB(矩形的对角线) ABDC(矩形的对边平行). ABC+BCD=180. 又ABC = 90, BCD = 90.证明性质:已知:如右图,四边形ABCD是矩形,ABC=90,对角线AC与DB相较
16、于点O.求证:(1)ABC=BCD=CDA=DAB=90;(2)AC=DB.ABCDOABC=BCD=CDA=DAB =90.(2)四边形ABCD是矩形,AB=DC(矩形的对边相等).在ABC和DCB中,AB=DC,ABC=DCB,BC= CB,ABC DCB.AC=DB. 1.矩形的四个角都是直角. 2.矩形的对角线相等.定理ABCDO做一做:请同学们拿出准备好的矩形纸片,折一折,观察并思考.(1)矩形是不是中心对称图形? 如果是,那么对称中心是什么?(2)矩形是不是轴对称图形?如果是,那么对称轴有几条?矩形的性质:对称性: .对称轴:.轴对称图形2条归纳结论 矩形是特殊的平行四边形,它除具
17、有平行四边形的所有性质外,还有平行四边形所没有的特殊性质.对称性:是轴对称图形.角:四条角都是90.对角线:相等. 角:对角相等.边:对边平行且相等.对角线:相交并相互平分.矩形的特殊性质平行四边形的性质已知:如右图,四边形ABCD是矩形,对角线AC与BD交于点E.证明:在RtABC中,BE= AC.ABCDE21证明:四边形ABCD是矩形.AC = BD(矩形的对角线相等).BE= DE= BD,AE=CE= AC (矩形对角线相互平分),BE= AC.212121直角三角形斜边上的中线上的性质三 直角三角形斜边上的中线等于斜边的一半直角三角形斜边上的中线等于斜边的一半. . 定理练一练:根
18、据右图填空已知ABC中,ABC = 90,BD是斜边AC上的中线.(1)若BD=3cm,则AC =_cm;(2)若C = 30 , ,AB = 5cm,则AC =_cm, BD = _cm.ABCD6105例1:如图,在矩形ABCD中,两条对角线相交于点O,AOD=120,AB=2.5 ,求矩形对角线的长.矩形的性质定理的应用四解:四边形ABCD是矩形. AC = BD(矩形的对角线相等). OA= OC= AC, ,OB = OD = BD ,(矩形对角线相互平分)OA = OD.ABCDO2121典例精析ABCDOAOD=120,ODA=OAD= (180- 120)=30.又DAB=90
19、 ,(矩形的四个角都是直角) BD = 2AB = 2 2.5 = 5.21提示:AOD=120 AOB=60 OA=OB=AB AC=2OA=22.5=5.你还有其他解法吗?例2:如图,在矩形ABCD中,E是BC上一点,AE=AD,DFAE ,垂足为F.求证:DF=DC.ABCDEF证明:连接DE.AD =AE,AED =ADE.四边形ABCD是矩形,ADBC,C=90.ADE=DEC, DEC=AED.又DFAE, DFE=C=90.又DE= DE,DFE DCE,DF=DC.1.如图,在矩形ABCD中,对角线AC , BD交于点O ,已知AOB=60 , AC=16,则图中长度为8的线段
20、有( )A.2条 B.4条 C.5条 D.6条 DABCDO60当堂练习当堂练习2.如图,四边形ABCD是矩形,对角线AC,BD相交于点O,BEAC交DC的延长线于点E.(1)求证:BD=BE,(2)若DBC=30 , BO=4 ,求四边形ABED的面积.ABCDOE(1)证明:四边形ABCD是矩形.AC= BD,ABCD.又BEAC,四边形ABEC是平行四边形,AC=BE,BD=BE.(2)解:在矩形ABCD中,BO=4,BD = 2BO =24=8.DBC=30,CD= BD= 8=4,AB=CD=4,DE=CD+CE=CD+AB=8.在RtBCD中,BC=四边形ABED的面积=(4+8)
21、= .ABCDOE21. 34482222CDBD212134324平行四边形1.矩形是轴对称图形和中心对称图形2.矩形四个角都是直角3.矩形的对角线相等且相互平分矩形性质有一个角是直角转换直角三角形等腰三角形课堂小结课堂小结见本课时练习课后作业课后作业1.2 矩形的性质与判定第一章 特殊平行四边形导入新课讲授新课当堂练习课堂小结第2课时 矩形的判定1理解并掌握矩形的判定方法(重点)2能应用矩形判定解决简单的证明题和计算题. .(难点)学习目标问题: 什么是矩形?矩形有哪些性质?ABCDO矩形:有一个角是直角的平行四边形.矩形性质:是轴对称图形; 四个角都是直角; 对角线相等且平分.导入新课导
22、入新课矩形判定的定理及其证明一活动1: 利用一个活动的平行四边形教具演示,拉动一对不相邻的顶点时, 注意观察两条对角线的长度.问题1:我们会看到对角线会随着变化而变化,当两条对角线长度相等时,平行四边形有什么特征?讲授新课讲授新课已知:如图,在ABCD中,AC , DB是它的两条对角线, AC=DB.求证:ABCD是矩形.证明:AB = DC,BC = CB,AC = DB, ABC DCB , ABC = DCB. ABCD, ABC + DCB = 180, ABC = 90, ABCD是矩形(矩形的定义).猜想:当对角线相等时,该平行四边形可能是矩形.ABCD 对角线相等的平行四边形是矩
23、形.定理活动2: 李芳同学通过画“边直角、边直角、边直角、边”这样四步画出一个四边形.问题2:李芳觉得按照以上步骤可以得到一个矩形?你认为她的判断正确吗?如果正确,你能证明吗?已知:如图,在四边形ABCD中,A=B=C=90.求证:四边形ABCD是矩形.猜想:当三个角都是直角,该四边形可能是矩形.证明: A=B=C=90,A+B=180,B+C=180.ADBC,ABCD.四边形ABCD是平行四边形.四边形ABCD是矩形.ABCD 有三个角是直角的四边形是矩形.定理例1:如图,在ABCD中,对角线AC与BD相交于点O , ABO是等边三角形, AB=4,求ABCD的面积.解:四边形ABCD是平
24、行四边形,OA= OC,OB = OD.又ABO是等边三角形,OA= OB=AB= 4,BAC=60.AC= BD= 2OA = 24 = 8.定理的应用二典例精析ABCDOABCD是矩形 (对角线相等的平行四边形是矩形).ABC=90(矩形的四个角都是直角) . 在RtABC中,由勾股定理,得AB2 + BC2 =AC2 ,BC= .SABCD=ABBC=4 =34482222 ABAC34.316ABCDO例2:如图,在ABC中, AB=AC,D为BC上一点,以AB,BD为邻边作平行四边形ABDE,连接AD , EC.(1)求证:ADC ECD;(2)若BD=CD,求证:四边形ADCE是矩
25、形.证明:(1)ABC是等腰三角形,B=ACB.又四边形ABDE是平行四边形,B=EDC,AB=DE,ACB=EDC,ADC ECD.ADCEB(2)AB=AC,BD=CD,ADBC,ADC=90.四边形ABDE是平行四边形,AE平行且等于BD,即AE平行且等于DC,四边形ADCE是平行四边形.而ADC=90,四边形ADCE是矩形.ADCEB1.如图,直线EFMN,PQ交EF、MN于A、C两点,AB、CB、CD、AD分别是EAC、 MCA、 ACN、CAF的角平分线,则四边形ABCD是( ) A.菱形 B.平行四边形 C.矩形 D.不能确定DEFMNQPABCC当堂练习当堂练习2.如图,O是菱
展开阅读全文