变量间的相关关系-PPT课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《变量间的相关关系-PPT课件.pptx》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 变量 相关 关系 PPT 课件
- 资源描述:
-
1、必修三第二章第三节必修三第二章第三节变量间的相关关系变量间的相关关系1.学习目标学习目标: : 1、知识与技能:、知识与技能:利用散点图判断线性相关关系,了解最小二乘法的思想及回归方程系利用散点图判断线性相关关系,了解最小二乘法的思想及回归方程系 数公式的推导过程,通过实例加强回归直线方程含义的理解,能够对实数公式的推导过程,通过实例加强回归直线方程含义的理解,能够对实际问题进行分析和预测。际问题进行分析和预测。2、过程与方法:、过程与方法:通过自主探究体会数形结合、类比、及最小二乘法的数学思想方法。通过自主探究体会数形结合、类比、及最小二乘法的数学思想方法。 通过动手操作培养学生观察、分析、
2、比较和归纳能力,引出利用计通过动手操作培养学生观察、分析、比较和归纳能力,引出利用计算机等现代化教学工具的必要性。算机等现代化教学工具的必要性。3、情感、态度与价值观:、情感、态度与价值观:类比函数的表示方法,使学生理解变量间的相关关系,增强应用回归直类比函数的表示方法,使学生理解变量间的相关关系,增强应用回归直线方程对实际问题进行分析和预测的意识线方程对实际问题进行分析和预测的意识,让学生动手操作,合作交流让学生动手操作,合作交流,激激发学生的学习兴趣。发学生的学习兴趣。 2.一、创设情境一、创设情境 导入新课导入新课 :世界是一个普遍联系的整世界是一个普遍联系的整 体,任何事体,任何事物都
3、与其它事物相联系。物都与其它事物相联系。生活中相关成语:生活中相关成语:“名师出高徒名师出高徒” , “瑞雪兆丰年瑞雪兆丰年” “强将手下无弱兵强将手下无弱兵” “虎父无犬子虎父无犬子” 我们曾经研究过两个变量之间的函数关系:我们曾经研究过两个变量之间的函数关系:一个自变量对应着唯一的一个函数值,这两一个自变量对应着唯一的一个函数值,这两者之间是一种确定关系。生活中的任何两个者之间是一种确定关系。生活中的任何两个变量之间是不是只有确定关系呢?请同学们变量之间是不是只有确定关系呢?请同学们举例说明举例说明3. 1商品销售收入与广告支出经费之间的关系。商品销售收入与广告支出经费之间的关系。商品销售
4、收入与广告支出经费之间有着密切的联系,商品销售收入与广告支出经费之间有着密切的联系,但商品收入不仅与广告支出多少有关,还与商品质但商品收入不仅与广告支出多少有关,还与商品质量、居民收入等因素有关。量、居民收入等因素有关。 我们可以举出现实生活中存在的许多相关关我们可以举出现实生活中存在的许多相关关系的问题。例如:系的问题。例如:4. 在一定范围内,施肥量越大,粮食产量就越高。在一定范围内,施肥量越大,粮食产量就越高。但是,施肥量并不是决定粮食产量的唯一因素,但是,施肥量并不是决定粮食产量的唯一因素,因为粮食产量还要受到土壤质量、降雨量、田因为粮食产量还要受到土壤质量、降雨量、田间管理水平等因素
5、的影响。间管理水平等因素的影响。2粮食产量与施肥量之间的关系。粮食产量与施肥量之间的关系。5. 在一定年龄段内,随着年龄的增长,人体内在一定年龄段内,随着年龄的增长,人体内的脂肪含量会增加,但人体内的脂肪含量还的脂肪含量会增加,但人体内的脂肪含量还与饮食习惯、体育锻炼等有关,可能还与个与饮食习惯、体育锻炼等有关,可能还与个人的先天体质有关。人的先天体质有关。3人体内脂肪含量与年龄之间的关系。人体内脂肪含量与年龄之间的关系。6. 应当说,对于上述各种问题中的两个变量之应当说,对于上述各种问题中的两个变量之间的相关关系,我们都可以根据自己的生活、学间的相关关系,我们都可以根据自己的生活、学习经验作
6、出相应的判断,因为习经验作出相应的判断,因为“经验当中有规经验当中有规律律”。但是,不管你经验多么丰富如果只凭经验。但是,不管你经验多么丰富如果只凭经验办事,还是很容易出错的。因此,在分析两个变办事,还是很容易出错的。因此,在分析两个变量之间的关系时,我们还需要有一些有说服力的量之间的关系时,我们还需要有一些有说服力的方法。方法。7.变量间相关关系的概念变量间相关关系的概念:自变量取值一定时自变量取值一定时,因变量的取值带有一定随因变量的取值带有一定随机性的两个变量之间的关系机性的两个变量之间的关系,叫做相关关系叫做相关关系请同学们回忆一下请同学们回忆一下, ,我们以前是否学过变量间的关系呢我
7、们以前是否学过变量间的关系呢? ?两个变量间的函数关系两个变量间的函数关系.相关关系与函数关系的异同点相关关系与函数关系的异同点:相同点相同点:两者均是指两个变量间的关系两者均是指两个变量间的关系.不同点不同点:函数关系是一种函数关系是一种确定确定的关系的关系;相关关系是一种相关关系是一种非确定非确定的关系的关系.事实上事实上,函数关系是两个非随机变量的关函数关系是两个非随机变量的关系系,而相关关系是随机变量与随机变量间的关系而相关关系是随机变量与随机变量间的关系.函数关系是一种因果关系函数关系是一种因果关系,而相关关系不一定是因果而相关关系不一定是因果关系关系,也可能是伴随关系也可能是伴随关
8、系.8.二、合作探索,直观感知 问题探究问题探究: 在一次对人体年龄关系的研究中在一次对人体年龄关系的研究中,研究人员获得了一研究人员获得了一组样本数据组样本数据: 根据数据根据数据,人体的脂肪含量与年龄之间人体的脂肪含量与年龄之间有怎样的关系?有怎样的关系?(同学们交流同学们交流) 年龄 23273941454950脂肪 9.517.8 21.2 25.9 27.5 26.3 28.2年龄 53545657586061脂肪 29.6 30.2 31.4 30.8 33.5 35.2 34.69. 从上表发现,对某个人不一定有此规从上表发现,对某个人不一定有此规律,但对很多个体放在一起,就体现
9、出律,但对很多个体放在一起,就体现出 “人体脂肪随年龄增长而增加人体脂肪随年龄增长而增加”这一规律这一规律。而表中各年龄对应的脂肪数是这个年龄。而表中各年龄对应的脂肪数是这个年龄人群的样本平均数。我们也可以对它们作人群的样本平均数。我们也可以对它们作统计图、表,对这两个变量有一个直观上统计图、表,对这两个变量有一个直观上的印象和判断。的印象和判断。 10.下面我们以年龄为横轴,脂肪含量为纵轴,建下面我们以年龄为横轴,脂肪含量为纵轴,建立直角坐标系,作出各个点,称该图为立直角坐标系,作出各个点,称该图为散点图散点图图表11.散点图:散点图: 两个变量的两个变量的散点图散点图中点的分布的位置是从左
10、中点的分布的位置是从左下角到右上角的区域,即一个变量值由小变大,下角到右上角的区域,即一个变量值由小变大,另一个变量值也由小变大,我们称这种相关关系另一个变量值也由小变大,我们称这种相关关系为为正相关正相关。人体脂肪含量百分比与年龄散点图010203040010203040506070年龄脂肪含量12.思考:两个变量成负相关关系时,散点图有什思考:两个变量成负相关关系时,散点图有什么特点?么特点? 两个变量的散点图中点的分布的位置是两个变量的散点图中点的分布的位置是从左上角到右下角的区域,即一个变量值由小从左上角到右下角的区域,即一个变量值由小变大,而另一个变量值由大变小,我们称这种变大,而另
11、一个变量值由大变小,我们称这种相关关系为负相关。相关关系为负相关。如某小卖部如某小卖部6天天卖出热茶的杯卖出热茶的杯数与当天气温数与当天气温的关系的关系温度温度杯杯数数13.问题:观察下面这两幅图,看有什么特点?问题:观察下面这两幅图,看有什么特点?020406080100120020406080100人体脂肪含量百分比与年龄散点图010203040010203040506070年龄脂肪含量图(图(1)图(图(2)14.020406080100120020406080100图(图(1)两个变量散点图呈下图,它们之间是)两个变量散点图呈下图,它们之间是否具有相关关系?否具有相关关系?无相关性:从
12、散点无相关性:从散点图可以看出因变量图可以看出因变量与自变量不具备相与自变量不具备相关性关性15. 正相关正相关 :因变量随自变量的增大而增大,图中的点分布在左下角到右上角的区域 负相关负相关 :因变量随自变量的增大而减小,图中的点分布在左上角到右下角的区域. 无相关性无相关性:因变量与自变量不具备相关性小结小结:两个变量间的相关关系,可以借助散点图直观判断16.思考:思考:在各种各样的散点图中,有些散点图在各种各样的散点图中,有些散点图中的点是杂乱分布的,有些散点图中的点的中的点是杂乱分布的,有些散点图中的点的分布有一定的规律性,年龄和人体脂肪含量分布有一定的规律性,年龄和人体脂肪含量的样本
展开阅读全文