全等三角形综合复习-PPT课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《全等三角形综合复习-PPT课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全等 三角形 综合 复习 PPT 课件
- 资源描述:
-
1、1 全等三角形的性质与判定全等三角形的性质与判定( (综合篇综合篇) ABC什么叫全等三角形?什么叫全等三角形?两个能两个能完全重合完全重合的三角形叫做全等三角形。的三角形叫做全等三角形。ABCABC全等三角形的性质?全等三角形的性质?全等三角形:全等三角形:对应边相等,对应角相等对应边相等,对应角相等。 ABC ABCABCAB=AB, AC=AC, BC=BCA=A ,B=B,C=C全等三角形共有全等三角形共有6组元素组元素(3组对应边、组对应边、3组对应角组对应角) 三角形的三角形的6组元素组元素(3组对应边、3组对应角)中,中,要使两个三角形全等,到底需要使两个三角形全等,到底需要满足
2、哪些条件?要满足哪些条件? 可见:可见:要使两个三角形全等,要使两个三角形全等,应至少有应至少有 组元素对应相等。组元素对应相等。36 6选选3 3边边边边边边 (SSS)两边一角两边一角两角一边两角一边角角角角角角两边和它的夹角两边和它的夹角(SAS)两边和它一边的对角两边和它一边的对角两角和夹边两角和夹边(ASA)两角和一角的对边两角和一角的对边(AAS)6三角形全等的三角形全等的4个个判定方法判定方法: SSS(边边边)(边边边)SAS(边角边)(边角边)ASA(角边角)(角边角)AAS(角角边)(角角边) 有三边对应相有三边对应相等的两个三角形等的两个三角形全等全等. . 有两边和它们
3、的有两边和它们的夹角对应相等的夹角对应相等的两个三角形全等两个三角形全等. . 有两角和它们的夹有两角和它们的夹边对应相等的两个边对应相等的两个三角形全等三角形全等. . 有两角和及其中有两角和及其中一个角所对的边对一个角所对的边对应相等的两个三角应相等的两个三角形全等形全等. . 准备条件:证全等时要用的间接准备条件:证全等时要用的间接条件要先证好;条件要先证好;三角形全等书写三步骤:三角形全等书写三步骤:1、写出在哪两个三角形中、写出在哪两个三角形中2、摆出三个条件用大括号括起来、摆出三个条件用大括号括起来3、写出全等结论、写出全等结论证明的书写步骤:证明的书写步骤: 熟悉基本图形熟悉基本
4、图形( (注意注意隐含条件隐含条件) ) :公共边公共边 熟悉基本图形熟悉基本图形( (注意注意隐含条件隐含条件) ) :公共角:公共角: 熟悉基本图形熟悉基本图形( (注意注意隐含条件隐含条件) ):对顶角对顶角 掌握一些简单思路:掌握一些简单思路:通过通过加上加上或或减去减去一个一个公共线段公共线段转转化化为为要证三角形的边要证三角形的边 掌握一些简单思路:掌握一些简单思路:通过通过加上加上或或减去减去一个一个公共角公共角转化转化为要为要证三角形的角证三角形的角ABCDEABCDE自主探究1:添条件判全等添条件判全等 独立思考以下题目,二分钟后看谁回答的准确141、如图,已知、如图,已知A
5、D平分平分BAC, 要使要使ABD ACD, 根据根据“SAS”需要添加条件需要添加条件 ; 根据根据“ASA”需要添加条件需要添加条件 ; 根据根据“AAS”需要添加条件需要添加条件 ;ABCDAB=ACAB=ACBDA=CDABDA=CDAB=CB=C友情提示:友情提示:添加条件的题目添加条件的题目. .首先要首先要找到已具备的条件找到已具备的条件, ,这些条件有些是这些条件有些是题目已知条件题目已知条件 , ,有些是图中隐含条件有些是图中隐含条件. .15 2 2、已知:、已知:B BDEFDEF,BCBCEFEF,现要,现要证明证明ABCABCDEFDEF,若要以若要以“SAS SAS
6、 ”为依据,还缺条件为依据,还缺条件_;若要以若要以“ASA ASA ”为依据,还缺条件为依据,还缺条件 _;若要以若要以“AAS AAS ”为依据,还缺条件为依据,还缺条件_并说明理由。并说明理由。 AB=DE AB=DE ACB=F ACB=F A=D A=DABCDEF自主探究自主探究2: 挖掘挖掘“隐含条件隐含条件”判全等判全等 独立思考以下题目,一分钟后开始自己在作业上写出解题过程。171.1.如图(如图(1 1),),AB=CDAB=CD,AC=BDAC=BD,则,则ABCABCDCBDCB吗吗? ?说说理由说说理由ADBC图(1)2.2.如图(如图(2 2),点),点D D在在A
展开阅读全文